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Abstract 

To keep up with the security needs being exerted by the ever-increasing 

complexity of technology, new ideas and approaches are needed. Once such attempt to 

address this is the Internet Scale Event and Attack Generation Environment (ISEAGE) at 

Iowa State University (ISU). ISEAGE is a next generation Internet testbed that hopes to 

provide researchers with the tools and resources necessary to address the every vexing 

security issues in today’s world. Among the many challenges involved with creating an 

Internet scale testbed is how to realistically virtualize the thousands of servers that make 

up the various destinations or endpoints on the Internet. To specifically address this 

problem, the Internet Scale Endpoint Masquerading tool (ISEMasq) was developed. 

ISEMasq is an integral part of ISEAGE that enables a small set of servers with off-the-

shelf software to pose or masquerade as any number of actual Internet destinations. To 

accomplish this, ISEMasq leverages various API functionality from the current and 

upcoming release of the ISO C++ standard, as well as other widely used and accepted 

third-party C and C++ networking APIs. The result is a highly reliable, performance 

driven, packet level network tool that brings ISEAGE one step closer to completion. 
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1 Introduction 

Modeling the vastness of the Internet with its millions of destinations is a 

complex and seemingly impossible task, though it is necessary in order to create a 

realistic testbed environment. However, what if it were possible to masquerade a small 

set of endpoints as countless thousands of actual endpoints? The development of the 

Internet Scale Endpoint Masquerading tool (ISEMasq, pronounced: [ice-mask]) makes 

this illusion possible. Before discussing the details of how this is done, it is first 

necessary to provide groundwork and background information further detailing testbeds 

and the project’s motivation.  

1.1 Testbeds 

As technology grows and advances so too grows our dependency on it; ever 

affecting and integrating with day-to-day life. A prime example of the growth of this 

complex relationship is the extensive use of the Internet for communication and sharing 

of products and ideas. As the interdependency between technology and daily life 

increases, it becomes even more critical to ensure the reliably and security of this 

infrastructure. However, the increased complexity of modern technology as well as our 

dependency is also increasing the difficultly of developing and effectively testing new 

security technologies. Undertaking this enormous task will require new approaches and 

ideas as well as the creation of versatile testbed environments that allow modeling and 

testing of large or complex networks. According to a report published in 2005 by the 

President’s Information Technology Advisory Committee, one of the top ten areas 

needing increased research and development is “modeling and testbeds for new 

technologies” [1]. Such testbeds would provide a host of opportunities for furthering 
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security education as well as security product development [2]. To that end, the 

committee feels that: 
 

“One of the barriers to the rapid development of new cyber security 

products is the paucity of realistic models and testbeds available for 

exercising the latest technologies in a real-world environment [1].” 
 

In order to facilitate and ensure the future of a society that places such a high 

emphasis on technology, it is necessary to development new testbed environments that 

better simulate the real world. The creation of such a virtual Internet represents a new 

paradigm in the area of security research and cyber forensics, and it will enable new and 

innovative research needed to solve the current security problems facing the world today. 

These environments will be essential in both industry and education. Being able to better 

model a real-world setting will make it easier to educate new IT security students without 

endangering real networks. Additionally it will allow industry to more thoroughly test 

new security products to help ensure that they operate effectively before testing them in a 

real environment. This will help alleviate the risk of accidental damage to equipment or 

information during the training of students or during the testing and development of new 

security products and devices [2]. 

That said, the Internet modeling problem is challenging, mostly because of the 

Internet's scale and complexity. In other words, how does one model or simulate the 

vastness of the Internet with only a limited amount of resources? The Internet is vast, 

made up of millions of pieces of computer hardware (switches, routers, PCs and servers). 

Though if one takes the point of view from each device’s perspective, there isn’t much in 

the way of hardware, mostly just the signals that come to/from it from other devices 
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somewhere out there in cyber-space. With this perspective in mind, it is possible to lay 

out the various signal characteristics as just a few functional layers. 

The communication of any two remote devices across cyberspace can be broken 

down into three simple layers. Layer 1 represents a sort of traffic control and basic 

infrastructure; it is comprised of a mass of interconnected routers that form the backbone 

of the Internet. Layer 2 contains more infrastructural features, specifically the address 

translation—DNS—and destinations. Layer 3 is then all the traffic; it is the client and 

network applications that utilize Layers 1 and 2 to accomplish their tasks. The 

combination of these three layers forms a fairly realistic yet manageable representation of 

the Internet in that it readily illustrates how ISEMasq is integrated into an Internet 

testbed. ISEMasq is specifically concerned with the mechanisms of Layer 2, so further 

discussion will be focused on primarily this layer. 

1.2 Motivation 

To specifically address the issues with representing Layer 2, it should first be 

broken down into two pieces as alluded to above. The first piece is DNS. This allows for 

an application to determine the address of the URL it wishes to contact. With address in 

hand, the second piece is needed: the destination. DNS tells a signal where to go and the 

destination gives it somewhere to actually go to as it traverses Layer 1. Both pieces of 

Layer 2 are an important part of an effective testbed environment. In order to accurately 

test a security solution, one needs traffic of all sorts, and traffic needs somewhere to go. 

Specifically, somewhere that can actively respond, otherwise it would be as if the phone 

rings forever with no one answering. 
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Such a fully reactive destination is the very essence of ISEMasq. ISEMasq 

provides large-scale endpoint objects without needing hundreds of actual machines by 

emulating multiple machines and/or networks including the name resolutions of those 

endpoints. ISEMasq is designed specially for integration with the Internet testbed 

research project at Iowa State University. The project is an ambitious attempt to meet the 

needs and challenges of an Internet scale testbed. 
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2 Related Work 

2.1 ISEAGE overview 

The Internet Scale Event and Attack Generation Environment (ISEAGE) is a first 

of its kind facility in a public university dedicated to creating a virtual Internet [3]. To 

fully understand the implication and importance of the work discussed in this thesis, it is 

essential to first have a clear and complete understanding of the vision of ISEAGE, its 

design, and the fundamental underpinnings needed to realize that design. 

As a next-generation testbed, ISEAGE breaks away from traditional computer-

based simulations and allows for researchers to perform realistic attack scenarios against 

different configurations of real equipment in a controlled environment [3]. ISEAGE is 

meant to simulate the proverbial Internet bubble on most topology diagrams, with all the 

eccentric traffic that comes with it. In essence, ISEAGE will provide many new tools for 

testing cyber defense mechanisms and even helping to solve cyber crime. As such, part of 

the design goal ISEAGE is to be a highly configurable environment than can model any 

aspect of the Internet [3]. 

The core of ISEAGE is a 64-node rack cluster that can be configured to support a 

variety of virtual networks. It is to be designed with multiple copies of each component 

such that configuration is scalable and can be changed quickly. Basically, each of the 64 

nodes can run at least one of the tools/models and if needed, be divided up in order to run 

multiple experiments on separate virtual networks. This will also allow for multiple 

research experiments to be carried out at the same time in separate Virtual Subnets or for 

a single very large experiment to be carried out in a single or multiple Virtual Subnets. 
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Because ISEAGE is designed specifically for use in security research it offers 

many advantages over a conventional network testbed. The primary advantage is that the 

set of tools used with ISEAGE, such as ISEMasq, will be designed for the ISEAGE 

testbed. ISEAGE will contain a vast warehouse of attack tools that will be able to 

simulate point-to-point and distributed attacks. It can also be used to recreate critical 

components of an infrastructure on an ongoing basis. The goal is to develop algorithms 

and methods to harden the networks and computers used to support the critical 

infrastructure. These live models of the infrastructure can be subjected to constant attacks 

in order to probe for weaknesses. Additionally the models will provide a means of 

replaying attacks, recreating a cyber crime scene, and evaluating new attacks before they 

become a threat to actual infrastructure [3].  

To better illustrate the development of ISEAGE, one can apply the layered 

Internet model discussed previously with a few additions. It is important to note that 

although this layered model does a good job representing ISEAGE, it does in some ways 

oversimplify some of ISEAGE’s features. Layers 0 & 4 as seen below, are ISEAGE 

specific layers that effectively wrap around the Internet layer model and give a more 

practical testbed view. The resulting implementation is divided into five distinct layers 

where each one relies on the previous layers in order to function. 
 

Layer 0: Command and Control 

Layer 1: Routing 

Layer 2: DNS & Traffic Endpoints 

Layer 3: Traffic Generation & Attack Tools 

Layer 4: Security Projects & Systems Under Test 
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From this layered illustration one can see that in order to simulate the Internet, 

ISEAGE needs to provide for the core functionality of the Internet. Layers 1 and 2 above 

represent these fundamental components and are essential for all the other layers to be 

effective and successful. In short, the completion of these components is essential to 

facilitating the ultimate goals of ISEAGE. Additionally, this core functionality needs to 

be able to handle the demand of the tools and test projects that will be run on it; because 

unlike computer-based simulations, ISEAGE will allow for real attacks will be played out 

continuously against different configurations of real equipment. While this work fulfills 

the Layer 2 needs as will be discussed in detail in later sections, an overview of the 

solutions for the other layers follows in the next section. 

2.2 ISEAGE projects  

There are a number of projects that have been developed to facilitate the 

completion of the core layers of ISEAGE. ISEMasq relates and/or interacts directly with 

each of the following tools. 

2.2.1 DeepFreeze 

Developed by Nate Karstens, DeepFreeze is the proverbial Layer 0 of ISEAGE. It 

was developed to facilitate a graphical command and control interface for the ISEAGE 

project. In addition to assisting the user in monitoring and controlling ISEAGE 

applications, it provides ISEAGE developers with an extensive application program 

interface (API) for authoring and controlling applications executing within the ISEAGE 

environment. DeepFreeze also provides a degree of fault tolerance to ISEAGE 
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applications and facilitates communication between the applications and their controlling 

interface [4]. 

In the simplest terms, a DeepFreeze-Daemon (DFD) runs on each of the nodes 

within ISEAGE, allowing the central DeepFreeze control console to configure and launch 

applications on each node as needed for a given experiment. The only caveat to this 

elegant solution is that in order for each tool or application to take full advantage of 

DeepFreeze, a graphical front-end must be written and then the tool needs to leverage the 

DeepFreeze API so that this front-end can communicate with and control the tool. 

Though this is a little more difficult for some of the older ISEAGE tools because they 

need to be reworked to use DeepFreeze, it should be fairly straightforward for future 

projects, and in the end will greatly improve many aspects of running experiments on 

ISEAGE. 

2.2.2 Traffic Mapper 

Currently, the Traffic Mapper, written by Dr Douglas Jacobson, handles the Layer 

1 responsibilities for ISEAGE. The Traffic Mapper is in many ways the heart of 

ISEAGE, as it is responsible for mimicking the route topology. It is essentially a piece of 

software that can model the behavior and topology of routers allowing the creation of the 

Virtual Subnets. The Traffic Mapper can act as a set of virtual routers so that traffic 

appears to have routed through the Internet. It can simulate approximately 50 

routers/routes per board that are then connected via the board backplane to create very 

large network topologies. 

The Traffic Mapper will most likely be run on a majority of the ISEAGE nodes, 

as it is key to representing the topology. Then additional tools/models would be run on 
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the remaining nodes for that subnet, and the systems under test would then be connected 

to this mini Internet. While a graphical front end is planned for the Traffic Mapper, the 

functionality is complete and it is in limited use, awaiting the completion of more 

supporting tools. 

2.2.3 Packet Mangling 

The Advanced Packet Obfuscation and Control Program (APOC), also known to 

ISEAGE as the packet changer/responder, was developed in 2005 by Adam Hahn [5]. It 

can be used to modify packets in real-time as they flow through the network allowing for 

a wide range of possibilities, from performing man-in-middle attacks to simply testing 

protocol resilience by introducing random errors. Its use was at one time considered as a 

way to fill the need of endpoint masquerading since it is capable of many types of packet-

level manipulation. However APOC was designed to facilitate much more generic and 

reconfigurable packet modification. This generic solution, while effective for the 

purposes of APOC, also suffers from many performance issues that limit its use as a 

large-scale endpoint masquerading tool. While APOC is designed to only tap select 

points in the ISEAGE network, for a variety of purposes, the design needs of ISEMasq 

are for a specific purpose and much more demanding in the area of performance as is 

discussed in Chapter 3. This distinction, though, in no way should reflect badly on APOC 

as it is a highly versatile tool that provides many unique capabilities to ISEAGE. 

2.2.4 Traffic Generation 

Traffic generation for ISEAGE is a multipart project that consists of a statistical 

model or generator and various mechanisms for feeding the model. At its center is the 

Markov Traffic Generator (MTG), which is an application-level traffic generation tool 
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that scripts network applications based on usage statistics of a specific or average set of 

users. Unlike many alternate approaches that operate at the packet level, it follows a 

unique approach of generating background traffic at the session level by leveraging 

various user applications [6]. As such, the MTG is application dependent and is able to 

generate various types of TCP traffic, representative of typical network traffic, in effect 

providing statistically governed user drones. 

Despite these important features of the MTG, there are a couple key factors 

missing that limit its current usefulness to ISEAGE. First is how to get the statistics to 

feed to the MTG. While it is possible, and in some cases desirable, to hand feed the 

model with specific traffic statistics, it is also necessary to have realistic traffic patterns. 

For this reason, an additional tool currently in development called the traffic collector is 

needed to capture traffic patterns from the actual Internet at particular locations so they 

can be replayed within ISEAGE using the MTG. This tool will often be used to gather 

information about traffic patterns at a client’s network, which are then used as the 

statistical parameters for the MTG so that ISEAGE can recreate those patterns. 

The second limitation, and more important to this work, is the need for actual 

endpoints in order for it to fully function. Since the MTG works above the transport layer 

it needs actual destination servers to interact with in order to fully represent user behavior 

and resulting traffic. 

2.3 Related Technologies 

The following networking technologies and terminology are important to 

understand before discussing the design of ISEMasq, as it relies heavily on various 

aspects of each. 
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2.3.1 Routing 

Routers represent the lowest functional layer of the Internet as discussed in 

Chapter 1 and are responsible for the source to destination delivery of packets across one 

or multiple networks [7]. Routing is often confused with bridging, which performs a 

similar function. The principal difference between the two is that bridging occurs at a 

lower level and is therefore more of a hardware function, whereas routing occurs at a 

higher level allowing for more complex analysis to be performed in order to determine 

the optimal path for the packet. 

Routing is a key feature of the Internet because it enables messages to pass from 

one network device to another through the use of routers to eventually reach the target 

machine. Each intermediary device performs routing by determining the proper path for 

data to travel between different networks, and then forwarding data packets to the next 

device along this path. To determine this next hop, a router compares the packet’s 

destination IP address to an internal lookup table and then sends it on its way; the IP 

addresses in the packet are never modified, as that is a feature more associated with 

Network Address Translation (NAT) [7]. As an aside, it is common today to find devices 

that can both route and perform NAT; conceptually though they are separate tasks. NAT 

is described in more detail in the next section. 

2.3.2 Network Address Translation 

Network Address Translation (NAT), sometimes referred to as IP masquerading, 

is a very important and relevant concept to the development of ISEMasq. NAT is 

described in RFC 1631, and extended by RFC 3022 [8]. RFC 3022 extends address 

translation introduced in RFC 1631 and includes a new type of network address and 
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TCP/UDP port translation. Most systems using NAT do so in order to enable multiple 

hosts on a private network to access the Internet using a single public IP address [9]. 

The term ‘NAT’ is commonly used to refer to a network device that performs the 

translation. The operation of a basic NAT capable device is deceptively easy to describe 

in general terms. It is an active unit placed in the data path, usually as a functional 

component of a border router or site gateway. In the simplest terms, a NAT rewrites the 

source and/or destination addresses of IP packets as they pass through. It intercepts all IP 

packets and may forward the packet onward with or without alteration to the contents of 

the packet, or it may elect to discard the packet. 

The essential difference here from a conventional router or a firewall is the 

discretional ability of the NAT to alter the IP packet before forwarding it on. NATs are 

similar to firewalls, and different from routers, in that they are topologically sensitive. 

They have an "inside" or local area network (LAN) and an "outside" or wide area 

network (WAN), and they undertake different operations on intercepted packets 

depending on whether the packet is going from inside to outside or vice versa. 

When traffic is processed from inside to outside it is referred to as an outbound 

NAT, and when its processed from outside to inside its an inbound NAT. A traditional 

NAT performs outbound NATing first and inbound NATing on the return traffic whereas 

a reverse NAT performs inbound first, and then outbound. This is an important 

distinction, as the direction that is NATed first sets up the address records for maintaining 

that connection. 

In a traditional NAT, when a packet is being passed in the direction from the 

inside to the outside, a NAT rewrites the source address in the packet header to a 

different value, and alters the IP and TCP header checksums in the packet at the same 
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time to reflect the change of the address field [9]. When a packet is received from the 

outside destined for the inside, the destination address is rewritten to a different value, 

and again the IP and TCP header checksums are recalculated. 

In a reverse NAT, traffic is initiated on the WAN and passed through the NAT 

device to an internal server. There are a couple types of reverse NAT. First is a one-to-

one or DMZ host, in which all externally initiated traffic is sent to a single internal 

machine. The second type is more discriminate and in some cases referred to as port 

translation. In this approach the traffic is port forwarded to a specific internal machine 

and port number based on the destination port number in the originating traffic. 

In both types of reverse NAT, when an incoming packet arrives on the external or 

WAN interface, the destination address is checked. If it is one of the NAT pool addresses, 

the NAT box looks up its translation table. If it finds a corresponding table entry, the 

destination address is mapped to the local internal address, the packet checksums are 

recalculated, and the packet is forwarded. If there is no current mapping entry for the 

destination address, the packet is discarded. 

2.3.3 Domain Name System 

The primary use of the Domain Name System (DNS) is to translate hostnames to 

IP addresses, making it the proverbial phonebook for the entire Internet. For example, in 

order to find the Internet address of www.iseage.org, DNS can be used to determine that 

it is 129.186.207.10. 

The domain name space consists of a tree of domain names. Each node or leaf in 

the tree has one or more resource records, which hold information associated with the 

domain name. The tree sub-divides into zones. A zone consists of a collection of 
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connected nodes managed by an authoritative DNS server. DNS distributes the 

responsibility for assigning domain names and mapping them to IP networks by allowing 

an authoritative server for each domain to keep track of its own changes, avoiding the 

need for a central registrar to be continually consulted and updated [10]. 

For example, .edu would be a root server node, and under it would be iastate, uni, 

and even uiowa servers, to name a few. Then at each university there could be 

engineering, business, or agricultural sub domain servers. These in turn could be broken 

down even further as needed. The end result is a URL like ece.eng.iastate.edu. For 

someone at another university to look this up, (and assuming all the cache is cleared) 

their computer would contact its DNS server, which would eventually contact the .edu 

root, which would ask the iastate node and on down to the lowest level DNS server that 

actually has the IP address needed to allow communication with the Electrical and 

Computer Engineering department’s web server. The main thing to take away from this is 

that once the initial request is made to the user’s immediate DNS server, the rest happens 

behind the scenes, with the user only being aware of the time it ends up taking to get a 

response. 

This however is only a small example; the entire DNS architecture is even more 

complex, and most of the related details are beyond the scope of this work. What is 

important, however, is the functionality that is provided to the user and not so much how 

it is provided. To this end, one of the goals of ISEMasq is to mimic the functionality of 

DNS at the user level without the complicated architecture. 
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3 Design Overview 

3.1 Goals 

The main goals of ISEMasq can be briefly summarized into functionality, 

performance, and flexibility. From a general perspective, ISEMasq needs to incorporate 

the functionality of routing, inbound NAT, and DNS. In order to best accomplish this, 

ISEMasq will be divided into two components: a virtual DNS endpoint and a virtual 

endpoint gateway. The functional requirements of these two components need to be as 

follows: 
 

1) The virtual DNS endpoint should be a scalable, demand-driven custom DNS 

server for ISEMasq. While it needs to perform common DNS functionality in the 

form of user queries, the backend will be anything but a traditional DNS server. 

The name records will not exist as usual nor will they have the same temporal 

requirements. 
 

2) The virtual endpoint gateway functionality should masquerade a small set of 

endpoints as many. As such, ISEMasq’s design will be specialized for this task 

and will be implemented at the IP layer so as to have no more impact on the 

network throughput than either a router or NAT. Also, unlike NAT, it will do port 

forwarding ubiquitously instead of based on the destination IP. 
 

The virtual endpoint gateway component of ISEMasq will be very similar to a 

reverse NAT but will accept all traffic regardless of the destination IP address as long as 

the destination MAC is correct, much like a router. As such, it should have two 
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interfaces, a WAN and a LAN, much like a NAT, with the WAN interface being the side 

connected to ISEAGE. 

In addition to being able to handle both UDP and TCP traffic types, the traffic 

going to and from the WAN interface of ISEMasq needs to remain realistic from the 

transport layer on down. If one were to capture the traffic at the WAN interface it should 

appear to be heading to numerous different destinations, even though it is condensed to 

only a few actual endpoints on the LAN side. 

Since ISEMasq will be directly connected to the Traffic Mapper as the next hop in 

the traffic route (as illustrated in the next section), it needs to handle at least as much 

traffic as a single Traffic Mapper is capable of handling and do so in near real-time. 

Specifically, ISEMasq is designed to masquerade as a border router and all subsequent 

endpoints within; therefore it needs to be able to handle the volume of traffic 

characteristic of all the endpoints it is simulating. For this reason, it’s easy to see how 

performance is not only crucial, but in fact critical to ISEMasq. 

While the DNS and gateway functionality of ISEMasq are in many ways separate 

components, they will be combined into a single tool. By doing so and providing three 

running modes, it actually increases the flexibility and effectiveness of the tool. Having a 

single application will allow for simpler command and control while maintaining the 

intended functionality. The three run modes are as follows: 
 

1) DNS Endpoint Only 

2) Endpoint Gateway Only 

3) Both 1) & 2) 
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In other words, when running a large-scale experiment on ISEAGE, the 

researcher will not have to have to configure separate tools, but one. Since the endpoints 

and DNS are network dependent on one another, one can’t practically exist without the 

other anyway. For example, first consider ISEMasq is running in Mode 2. If URL-based 

communication with the endpoint(s) is desired, then somewhere on the ISEAGE network 

ISEMasq will have to be running in either Mode 1 or 3. Conversely, if ISEMasq is 

running in Mode 1 and replies to IP traffic are desired, then an endpoint is needed 

somewhere on the network. Additional topology flexibility from offering two modes of 

operation can be seen in the next section. 

3.2 ISEAGE Integration 

Starting with the network topology layer that is provided by the Traffic Mapper, it 

is now worthwhile to discuss how ISEMasq works with it to provide other tools or test 

systems plugged into ISEAGE the destinations they need to connect to, as discussed in 

the Introduction. Like the other tools of ISEAGE, ISEMasq will run on one of the many 

ISEAGE nodes and process all IP traffic that is sent to it, regardless of the destination IP. 

To this end, ISEMasq will rely on the Mapper and its associated topology to route traffic 

to it. For example, ISEMasq could be connected to the default route of the Traffic 

Mapper(s), or any other subnet endpoint that exists at the edges of the Mapper topology. 

From the Mapper’s perspective ISEMasq will simply be seen as another router, 

though once the traffic reaches ISEMasq it is processed in one of two unique ways 

depending on the run mode. First, if the traffic is DNS and the DNS mode is enabled, 

then a lookup is performed and a response is generated. Otherwise, the traffic is 

processed very similarly to an inbound NAT and forwarded to a designated server 
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connected behind ISEMasq. In both cases, the traffic is essentially condensed to a single 

set of servers and services behind ISEMasq without the ISEAGE network at large being 

aware of it. To illustrate this setup as well as other possible ways to integrate ISEMasq 

into the ISEAGE network, consider the following simple topology given in Figure 3.1. 

 

 
Figure 3.1: Small Toplogy 

 

Here R1 and R2 are routers, C and S represent a Client and Server pair and M is 

ISEMasq running in Mode 3. When placed between R2 and S, ISEMasq simply needs to 

be treated as a router would, such that the next hop for both R2 and S point to M instead 

of each other. With this simple topology example in mind, now consider what an actual 

Internet topology might look like in Figure 3.2 below. 

Notice that in Figure 3.2 that there are two instances of ISEMasq, one as just a 

gateway (Mode 2) and one as just DNS (Mode 1). While it is possible to combine them, 

as will be discussed later in this section, this helps illustrate the variety of integration 

options. Also note that ISEMasq could be connected to any router in Figure 3.2 with the 

exception of the red router, marked R0. This is due to redundant route paths around R0, 

so that if ISEMasq were hooked to it, other connections would be left disconnected and in 

need of rerouting. 
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Figure 3.2: Large Toplogy 

 

In both of the above examples, ISEMasq is essentially acting as the border router 

for the destinations that it is masquerading for. When inserted into a topology to act as 

said destinations, one of two setup approaches can be taken. First, one could simply 

modify the next hop of the first upstream router (i.e. R1 in both examples) to point to the 

IP address of ISEMasq instead of the address of the original border router. Or, one could 

just use the original router’s IP address on the WAN interface of ISEMasq, thus 

eliminating any modifications to R1. 

Since ISEMasq was specifically designed to create the illusion of many servers 

and routers existing on a network it helps make it possible to simulation of large network 
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topologies without requiring the footprint of a large topology. In other words, not only 

can ISEMasq reduce the number of actual endpoints needed for a simulation, it can also 

reduce the number of route points leading to a set of destinations. Going back to Figure 

3.1, assuming for the moment that topology is not as important (as it might be in some 

experiments), it becomes possible to reduce the setup to its simplest form as seen in 

Figure 3.3. When this same reduction is done to the more realistic Internet topology 

(Figure 3.2), the resulting topology, although functionally the same, is now much simpler 

to model as seen below in Figure 3.4. Notice that the two instances of ISEMasq were 

condensed while maintaining their functionality by running a single instance in Mode 3. 

 

 

 
Figure 3.3: Small Topology Simplified 

 

Regardless of the location in the route path, ISEMasq will always have the WAN 

interface toward the client and the LAN toward the server. The WAN is labeled as such 

since all traffic off that interface is as it would be on the actual Internet, i.e. any and all IP 

addresses are expected to be seen there. The LAN interface, on the other hand, only 

expects to see the IP addresses of the servers, which will most likely be on the same 

subnet. While it is possible to put multiple servers on multiple subnets and add an alias IP 

for each on the LAN interface, it is not necessary to the functional performance of the 

ISEMasq, and in fact just over-complicates the setup. 
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Figure 3.4: Large Topology Simplified 

 

Finally, ISEMasq was designed so that the server(s) behind it could be any off-

the-shelf solutions. One could even run ISEMasq in Mode 2, and then add an actual DNS 

server to the Server pool, maybe even with caching or forwarding to the real Internet. It 

would even be possible to run some sort of web-proxy service, intrusion detection system 

(IDS), or any other specific type of server platform for development and testing; the 

possibilities are really quite vast. See Section 5.3 for even more ideas. 
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3.3 Assumptions 

During the design phase it became clear that much of the functionality and 

performance of ISEMasq would depend on the backend data structure needed for tracking 

unique connections. Since this connection mapping of the traffic is the most critical and 

resource-intensive part of the design, many of the assumptions largely revolve around the 

underlying data structure. 

The first of these is the assumption that all client OSs that initiate connections 

though the gateway will behave in a typical manner, such that they will use a new socket 

and source port pair for each outgoing connection to a specific destination. Failure of a 

client to do so will result in the database losing track of where the connection originated. 

Furthermore, and more importantly, it is assumed that the client does not reuse the same 

socket to connect to a different destination until the database has flagged the old 

connection as stale and purged it. 

Secondly is the assumption that there will be no need for long-standing 

connections without data flow. In this sense it means that the state of the connection 

information in the database has limited state, and will quickly timeout when idle. This is 

due to the fact that the virtual endpoints are to mainly serve as hosts that the application-

level packet generation model (e.g., the MTG) or attack tools can bounce traffic off of. 

Finally, the worst-case scenario is considered: a very large SYN scan. To the 

software, this could have the effect of a denial-of-service attack because it would increase 

the size of the connection database quite rapidly. While there is a timeout built into the 

database, it can’t be very aggressive since it would destroy many normal connections. To 

address this, a database limit was added. Basically, in addition to checking the database 

for stale entries as laid out in the next section, the program should additionally check that 
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the database hasn’t exceeded its maximum size. If it has, then and only then are entries 

that have not reached their maximum lifetime overwritten. 
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4 Architecture 

In general, ISEMasq consists of various API functionality from the current and 

upcoming release of the ISO C++ standard, as well as other widely used and accepted 

third-party C and C++ networking APIs. The resulting architecture not only has 

programming framework considerations, but also other logistical considerations relating 

to functionality and how it compares to alternative approaches. 

4.1 Programming Framework 

ISEMasq was designed and written in C++ with a few C-based APIs. The use of 

the C family of computer languages allowed for the low-level control and speed needed 

as well as providing access to high-quality libraries. These libraries helped facilitate 

development, resulting in fewer bugs, reduced reinvention-of-the-wheel, and lower long-

term maintenance costs. This section discusses the main libraries and APIs used in the 

design and development of ISEMasq. These APIs were instrumental in the development 

and include libpcap, libnet, the Standard Template Library and the Boost library. 

4.1.1 Libpcap 

The libpcap API provides a framework for capturing packet traffic from the 

network. Many different open source tools use this library in their development including 

TCPdump and Snort [11]. Using libpcap to capture traffic is commonly referred to as 

sniffing. Often times a sniffing application may only be interested in specific traffic, such 

as telnet, FTP, or DNS. Whatever the case, it is rarely useful to just blindly sniff all 

network traffic. Fortunately libpcap provides the developer a unified, easy-to-use 

interface for filtering the traffic it sees. And, because libpcap’s filters interact behind the 
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scenes directly with system specific filtering mechanisms, it is far more efficient than 

filtering traffic manually, which involves numerous steps. Because of this performance 

and its solid API, libpcap is a perfect fit for the incoming communications needs of 

ISEMasq, and when combined with libnet, enables the bidirectional flow of traffic that 

ISEMasq must provide. 

4.1.2 Libnet 

Libnet is a high-level API that allows the application programmer to construct and 

inject network packets. It provides a portable and simplified interface for low-level 

network packet shaping, handling and injection [12]. As such it was a perfect fit for the 

development of ISEMasq especially when combined with libpcap. 

The libnet library has a number of injection modes that it can run in depending on 

what level of injection control over the network stack is needed. The two options for the 

Gateway component of this project were the advanced modes of the standard 

LIBNET_RAW and LIBNET_LINK modes, or LIBNET_RAW_ADV and 

LIBNET_LINK_ADV, respectively. The advance modes are necessary since libnet is not 

being used to build the packet, but merely to write out the ones modified from the libpcap 

capture. By initializing libnet in advanced mode it is then possible to use the 

libnet_write_raw_adv() function call is used instead of libnet_write(). This variant of the 

libnet_raw_adv() injection call is only available in version 1.1.3+. 

The DNS component on the other hand used LIBNET_RAW instead, since the 

reply packets had to be constructed mostly from scratch, and the regular mode provides 

functionality that nicely assists the packet creation process at each network layer. If either 

the standard or advanced version of the LINK mode were used for either component, then 
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ISEMasq would also need to have code to handle address resolution protocol (ARP) in 

order to fill in the Ethernet header. It is therefore preferable to use LIBNET_RAW_ADV 

for sending IP packets, as it sends the data through the kernel, which uses the system’s 

routing function to determine proper link-layer encapsulating headers. 

4.1.3 Standard Template Library 

The Standard Template Library (STL) is a software library that was designed and 

published by SGI and is partially included in the C++ Standard Library. Both libraries 

include some features not found in the other [13]. Though since ISEMasq uses ISO C++ 

as it base language, the following discussion will only be concerned with its 

implementation of the STL, which is a subset of the original SGI STL. 

The design of ISEMasq hinges on the ability to quickly and reliably store and 

retrieve connection information. Now, while it would have been possible to write custom 

data structures from scratch, they would have to be extensively tested to ensure 

performance, reliability, and data consistency. The STL library not only satisfies these 

concerns, but it is highly flexible due to its template-based design and its additional 

library of STL algorithms. 

Of the many available STL containers, ISEMasq relies extensively on the map 

class, which can be conceptually thought of as an “associative array” in which key values 

are associated with corresponding values. Maps are based on the red-black tree data 

structure, and guarantee O(log n) insertion and lookup time [13]. Additional details on 

the use of this and the other structures used can be found in the Chapter 5. 
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In addition to being designed with STL data structures, the back-end database is 

encapsulated in a separate C++ class; see Appendix A for the class header file. This code 

modularity will aid making further improvements to the back-end in two ways: 
 

1) As is standard for object-oriented design, the implementation of the class can be 

easily changed without affecting the interface and hence any of the Main code. 
 

2) Since the implementation relies on the STL, changing the underlying data 

structures would require very little code rewrite. Ideas for what to change are 

discussed in more depth in Chapter 6. 

4.1.4 Boost 

Boost was started by members of the C++ Standards Committee Library Working 

Group and has since expanded to include thousands of programmers from the C++ 

community at large with a license that encourages both commercial and non-commercial 

use [14]. Adobe, Real Networks, and McAfee are a few of the big name organizations 

that use the Boost libraries [15]. The Boost Group emphasizes libraries that work well 

with the C++ Standard Library. In fact, ten of the Boost libraries are included in the C++ 

Standard Library’s Technical Report 1 (TR1), and so are slated for later full 

standardization. TR1 is a draft document specifying additions to the C++ Standard 

Library, and though it is not yet standardized, will likely, as it stands now, be part of the 

next official standard due out by 2009. More Boost libraries are in the pipeline for TR2. 

For these reasons, using Boost libraries can give ISEMasq a head start in adopting new 

technologies. 
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While the Boost library offers dozens of various libraries, two in particular were 

of use in ISEMasq: Boost program options and Boost threads. The Boost program options 

library provides ISEMasq with an object oriented API for creating and parsing program 

parameters from either the command line or a configuration file [16]. The Boost threads 

on the other hand were used to provide the concurrent traffic processing needed for 

ISEMasq to handle full duplex communications. 

There are several advantages to using Boost libraries instead of existing C 

variants, especially since C requires careful use in C++. For instance the Boost thread 

interface was designed from the ground up and is not just a simple wrapper around any 

specific C threading API. Many features of C++, such as the existence of 

constructors/destructors, function objects, and templates, were fully utilized to make the 

interface more flexible. The resulting implementation currently works for POSIX, 

Win32, and Macintosh Carbon platforms [17]. In short, the use of Boost libraries adds 

interface flexibility to ISEMasq where it otherwise wouldn’t exist and facilitates 

developmental consistency by keeping as much of the project based in C++ as possible. 

4.2 General Considerations 

With the programming framework set up, it is necessary to turn the focus towards 

other architectural considerations that were encountered during the development of 

ISEMasq. These include what type of network device ISEMasq will mimic and the ability 

of multiple threads to simultaneously access the same network traffic. 
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4.2.1 Network Device Type 

There are two main types of network devices: active and passive. Most network 

devices act as active nodes on a network, meaning that they often have their own IP 

address and are visible to the other devices on the network. In this case a device’s NIC 

(network interface card) operates normally by checking the destination MAC address of 

the Ethernet frame against its own and if it matches, saves the frame for further 

processing by the operating system, or else it discards the frame. Passive devices on the 

other hand, such as switches and network taps, are transparent, meaning that they are 

essentially invisible to the other devices on the network. The main purpose of a 

transparent device is to monitor or control traffic without other devices needing to know 

of its existence. 

Since ISEMasq is only concerned with traffic that is sent specifically to its MAC 

address, like most routers, it is better suited as an active device. However, even though 

ISEMasq need not be aware of every packet that a passive device sees, it does need to use 

the same mechanism for listening to the wire. The reason for this is that most active 

devices use system calls based on sockets and get their access to the network through 

various mechanisms in the kernel. These mechanisms allow the network application to 

read and write traffic only to or from the IP address that the kernel has associated with 

the network interface. Given that ISEMasq is required to handle all IP traffic regardless 

of IP address, socket-based design just won’t work. A potential caveat to this are divert 

sockets in the FreeBSD system which according to the man page may provide a socket-

based program the ability to deal with unassociated IP addresses [18]. Instead, ISEMasq 

uses libpcap and libnet as previously mentioned to read and write packets to the network. 
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While ISEMasq uses the same libpcap listening mechanism that some passive 

devices use, it does not do packet capturing in promiscuous mode. This has an added 

benefit because there is no need for additional filtering code, thus overhead is reduced 

and the rate of data that the box can handle is increased. Instead of having to keep track 

of the packets that are written out in order to filter them from looping back in, all that is 

needed is a simple Ethernet destination filter applied to libpcap. So, if the destination host 

is equal to the ISEMasq interface that captured it then it is processed, otherwise the 

packet is ignored, letting the kernel handle it if so desired. 

4.2.2 Threads and Packet Capturing 

From a data flow perspective, the gateway function of ISEMasq effectively 

bridges two network interfaces together such that all traffic from one is forwarded to the 

other. In the software world this bridging can be done using C libraries such as libpcap 

and libnet. To speed up such an implementation, threads can be used. In Figure 4.1, 

Thread 1 is constantly capturing (via libpcap) from the WAN interface (eth0) and writing 

(via libnet) to the LAN interface (eth1), as Thread 2 simultaneously reads from eth1, and 

writes to eth0. 
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Figure 4.1: Overall architecture and data flow of a typical software approach. 

 

While this approach is effective, a problem arises when the design is expanded to 

run multiple threads that need information from the same interface. Specifically, when 

ISEMasq is run in Mode 3, both DNS and gateway need to listen for incoming traffic on 

the WAN interface (i.e. eth0). In this scenario, the design needs to provide for a way to 

allow two separate software components to simultaneously process data from the same 

interface efficiently. It was decided to have each of the two components run a separate 

libpcap capture on the WAN interface. The alternative would have required a manager 

and worker thread design, which would have required more user-land processing as well 

as additional shared data structures and corresponding mutexes. Instead, the simultaneous 

capture approach allows for the main part of the program to simply spawn off a thread (or 

set of threads) for each mode that’s activated. Not only does this simplify the code 
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organization, but it also speeds up packet processing as can be seen by looking at the 

libpcap internals. 

The libpcap packet capture library is optimized for use with the Berkeley Packet 

Filter (BPF) on UNIX-based platforms. The BPF not only provides a very effective 

mechanism for capturing traffic it also provides built-in filtering capabilities that happen 

in kernel space. So, in addition to leveraging the BPF for performing the actual packet 

capture, libnet provides a filter compiler for the BPF pseudo-machine code. On most 

systems supporting it, a kernel-resident BPF implementation processes the filter code and 

applies the resulting pattern matching instructions to received frames. Those frames 

matching the patterns are received through the BPF machinery; those not matching the 

pattern are otherwise unaffected [19]. 

When a packet filter instance of BPF is created, it is bound to an actual network 

interface such as eth0 or eth1 and shows up as a special device such as bpf0, bpf1, etc. 

On a FreeBSD system, a given interface can be shared by multiple BPF instances, and the 

filter underlying each descriptor will see an identical packet stream [20]. Whenever a 

packet is received by an interface, all BPF descriptors listening on that interface apply 

their filter and each descriptor that accepts the packet receives its own copy. This allows 

ISEMasq to simply create multiple BPF instances on the WAN interface, with each BPF 

instance seeing and filtering the incoming data in the kernel before it is passed to the 

respective thread within ISEMasq for further processing. 

4.3 Alternate Approaches 

During the design process, various alternative software approaches were 

considered for the DNS and gateway components of ISEMasq. As the following 
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discussion shows, they are not as well suited for the design goals as the programming 

architecture and framework included in ISEMasq and already discussed. 

4.3.1 Gateway 

The default firewall software that comes with FreeBSD is known as PF or 

PacketFilter [21] and is similar to IPF/IPNAT, IPFW/NATd, and IPTables. In conducting 

initial research during early development of ISEMasq, it was discovered that PF could 

provide functionality very similar to that of the gateway portion of ISEMasq. All that is 

needed is to enable PF and the gateway options in FreeBSD’s system configuration, then 

add one or more rules in the PF configuration file [21]. A very simple example of such a 

file would look like this: 
 

rdr pass on eth0 proto tcp from any to any port 1234 -> $Dest_Server_IP 
 

Considering that PF is designed and written to run in kernel-space, this seems like 

a quick and effective solution, and maybe in some environments it would be fine, but in 

the ISEAGE world this is far from sufficient. The most obvious drawbacks compared to 

ISEMasq are that it does not have the DNS capabilities as well as it would be very 

difficult to integrate with DeepFreeze since the DFD is designed to interact with user 

executables. Therefore, in order to integrate a PF-type solution with ISEAGE, a custom 

application or tool will still need to be written in order to allow the DeepFreeze console 

to control and configure it. The tool would run on one of the nodes just like ISEMasq and 

would have to integrate with the DFD so that it could then configure and restart PF based 

on some configuration settings. Also as mentioned, since PF requires a separate rule to be 



www.manaraa.com

  34 

generated for each connection mapping desired, configuring it would be more involved 

than the simple configuration file that ISEMasq is able to provide 

Additional drawbacks of PF include fault tolerance, scalability, and 

customization. Even though PF runs in kernel-space, if it crashes it could potentially 

crash the system. Also, since its functionality is based on a firewall, it could interfere 

with other applications, especially network-dependent ones such as the DFD. Regarding 

scaling, a separate rule would need to be added for each destination port to be handled, 

where as ISEMasq was designed to use a single set of logic to map ports regardless of the 

number of different mappings. 

Finally, even though PF is capable of performing many types of packet filtering 

and redirecting, what is required for this task is but a small and uncommon use of it. 

ISEMasq, on the other hand, has been designed specifically for its task, enabling it to 

provide additional features that PF cannot (see Chapter 5). Because of this specialization, 

initial testing using the worst case of an nmap scan showed that ISEMasq is able to 

perform as well as PF, even though much of it runs in user-space. 

4.3.2 DNS 

Developed by the Internet Systems Consortium (ISC), BIND (Berkeley Internet 

Name Domain) is used on the majority of name serving machines on the Internet [22]. 

Attempting to provide the DNS functionality of ISEMasq with software such as BIND 

presents significant hurdles. First, one would need to make sure that all the DNS traffic 

makes it to the BIND service regardless of the actual destination IP address. This could 

be accomplished by either aliasing all possible IP address on the interface or by using PF 

to redirect all incoming traffic to a specific location such as the localhost. Neither of these 
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is very feasible for two reasons: 1) it is impossible to alias all IPs, and 2) any PF solution 

would be very difficult to integrate into ISEAGE as discussed previously in Section 4.3.1.  

Now, even if the hurdles of using BIND can be overcome to this point, there is 

still the issue of providing responses to the lookups. Since BIND would be running 

without the DNS infrastructure at large to facilitate name resolutions, an all-inclusive 

lookup cache would have to be created. Such a cache would be incredibly large and 

nearly impossible to manage properly. 

By developing a custom solution such as ISEMasq, all the issues mentioned 

above are avoided. First of all, ISEMasq uses low-level network APIs such as libpcap to 

make sure that it has access to all the traffic coming into the interface allowing it to make 

the decision if the traffic is relevant. Second, the DNS records are not predefined, but 

rather created on the fly and then simply timed out if not re-queried after some time. To 

ensure that the records that have been requested are not held on to past this timeout, the 

TTL option in the DNS message packets is set to a value that is less then the timeout. If a 

specific record is re-queried before the timeout has expired, then the timeout value is 

simply updated and counting starts again. 
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5 Implementation 

Based on all the design goals and architecture decisions described previously, the 

final implementation form of ISEMasq consists of a main program, a DNS endpoint 

thread, two virtual endpoint gateway threads, and a back-end database class. These 

components interact as seen in Figure 5.1. 

 

 
Figure 5.1: Implementation Overview 

 

The main modestly parses the user-input configuration options, both from the 

command line and configuration file (see Appendix B), then initializes the custom data 

class, initializes libnet and libpcap on the appropriate interfaces to include necessary 

traffic filters, and spawns the corresponding threads to handle the packet flow. The 

libpcap filter setup and thread spawning is dictated by which run mode is selected by the 

user and is very important here as it determines what traffic the gateway the DNS 

components see and process. The implementation of each major component of ISEMasq 

is examined in more detail in the following sections. 
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5.1 Virtual Endpoint Gateway 

The virtual endpoint gateway component consists of two threads and three back-

end data structures. Looking at the data structures first, they consist of two STL maps and 

one STL queue. The maps have the following < key , value > pairs: 
 
Internal Destination < port number, IP address > 

Current Connections < IP-tuple, custom struct > 

And the queue has a single < value > layout: 
 
Stale Connections < STL iterator > 
 

The value of the key in the Current Connections data structure is the connection 

ID and is derived from the source IP, source port, and destination port, also known in 

networking as the IP-tuple, resulting in a 64-bit value that is unique to the connection. 

While the elements of the map are stored based on this key value, the queue elements are 

stored in order of the creation time of the corresponding map elements that they point. 

Instead of having a single monolithic data structure for tracking connections, it 

was decided to use two smaller dynamic data structures that can be rapidly changed: one 

for the data entries and one for timestamps to identify stale entries that need deletion. 

Having two separate data structures for connection tracking effectively separates the 

database insertion operation from the purge operation. This in turn provides better 

performance as each structure can be chosen to optimize for its specific data access 

needs. The map provides O(log n) insertions based on the connection ID while the queue 

provides O(1) additions and deletions based on the connection timestamp. 

The two threads comprising the virtual endpoint gateway are responsible for 

processing traffic from the WAN interface to the LAN interface (inbound traffic), and 
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from the LAN to the WAN (outbound traffic) as can be seen in Figure 5.2. It is important 

to note that the inbound thread is the only one modifying or writing to the data structures, 

as the outbound thread merely reads data. Carefully controlling access to the database as 

such helps reduce complexity and possible data corruption, resulting in better 

performance and reliability. 

 

 
Figure 5.2: Gateway Flow 

 

With this flow in mind, it is worthwhile to examine the endpoint masquerading 

process in a little more detail by taking a look at the processing of each thread 

individually starting with the incoming traffic. Once traffic has been captured and filtered 

on the WAN interface it is processed as follows: 
 

• Get the current time 

• Generate the connection ID 

• Attempt to add the ID to the database 

• If the Add succeeded, add a corresponding entry to the purge queue 

• Else if the Add failed, update the time stamp of the existing connection 
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• Use the destination port to lookup the new destination IP 

• Modify the packets destination IP and TTL, then fix checksums 

• Check next queue entry for expiration 

• If stale, then remove 

• Else add to back of queue 

• Write packet out to LAN interface 
 

Since much of the work needed for the masquerading process is handled by the 

inbound thread, completing the process on the return or outbound traffic as it is captured 

and filtered on the LAN interface is simply as follows: 
  

• Generate the connection ID 

• Use ID to lookup the original destination IP 

• Restore the packets original addresses 

• Write packet out to WAN interface 
 

With the packet processing of the gateway component clearly outlined, it’s time 

to move on to the DNS component, which ensures that Internet applications are able to 

look up ways to get to the gateway. 

5.2 Virtual DNS Endpoint 

The virtual DNS endpoint serves the purpose of providing a more realistic 

gateway in ISEMasq by allowing the use of URLs instead of IP addresses. This 

component also has three back-end data structures and is very similar in data and network 

flow to the virtual gateway endpoint component except that it only consists of a single 
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thread. Again considering the data structures first, the two STL maps used have the 

following < key , value > pairs: 
 
Standard Lookups < URL, IP Address > 

Reverse Lookups < IP Address, STL iterator > 

And the queue has this < value > layout: 
 
Stale Records < STL iterator > 
 

All three structures will always be the same in size, since the reverse lookup map 

and stale record queue are cross-linked against the standard lookup map via STL 

iterators. This linking, combined with the custom structure that contains data, such as the 

timestamps, makes up the standard lookup map the main data structure for this 

component, much like the current connections map in the gateway component. With 

these structures in place, it is time to discuss the process of handling incoming DNS 

requests. While the code needed to actually parse and construct DNS message packets is 

a little tricky, the general process overview of this component can be seen here in Figure 

5.3. 

 

 
Figure 5.3: DNS Flow 
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With this flow in mind, it is worthwhile to examine the DNS masquerading 

process in a little more detail by taking a look at the processing of individual DNS 

requests. Once traffic has been captured and filtered on the WAN interface, the thread 

checks the type of DNS message. If the message is a query, it attempts to look up the 

appropriate reply based on the type of query and then builds and transmits a response 

message. If the lookup is successful then the timestamp for the corresponding entry is 

updated. In the case that the lookup does not find an existing entry, then one is 

dynamically generated and added to the standard lookup map. Following this, a 

corresponding entry is also added to the back of the stale entry queue. These on-demand 

record generations can have various constraints; the most common being the allowed 

range of values from which an IP address can be picked, as will be discussed in the 

following section. Though this description of the DNS component does not discuss the 

many nuances of the DNS message format and its parameter specifics, the overall 

concept is fairly straightforward and effective. 

5.3 Additional Features 

There are several additional features built into ISEMasq that perform functions 

ranging from providing feedback to controlling program flow. At present there is an 

additional thread that runs every few seconds for the sole purpose of displaying 

connection and database statistics. In the future this should be integrated with the 

proposed GTK+ front end as discussed in more detail in Chapter 6. Also, ISEMasq has 

the ability to control which subnet(s) the DNS endpoint is allowed to host lookups for. 

The range can be all routable IP’s or a specific class A, B, or C subnets, depending on the 

constraints of the simulation. 
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Another feature in ISEMasq is the destination flow control, which consists of two 

parts. First is the default destination option, which if set sends all traffic from ports that 

aren’t specifically mapped to the default server, much like a DMZ NAT mapping. If left 

unset, the software will randomly cycle through the existing destination mappings each 

time an unknown destination port is detected. 

The second part of the destination flow control allows for multiple destinations 

(servers) to operate on the same port, i.e. provide the same service. In this case it would, 

for example, be possible to have multiple web servers behind the gateway. If enabled, the 

software then spawns off a thread that will periodically (e.g. every minute or so) change 

the mapping for that service, in this case port 80. In addition to load balancing, this also 

allows for session-level content to vary dynamically over time. 

Finally, though not designed with this in mind, ISEMasq can be hooked up in 

reverse to allow for some interesting traffic control and honey potting. If ISEMasq were 

to be hooked up to a wireless access point (AP) as its default route, then it is possible to 

control the actual destinations of all traffic from anyone connected to the AP. In this case, 

ISEMasq would be used to condense specific traffic to either a pool of custom servers or 

to specific servers elsewhere on the network or even Internet. 
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6 Future Work 

While ISEMasq has reached a solid milestone in its development with the major 

functionality and design goals having been met, there is always room for improvement. 

Future scalability with any large network application is always a concern, especially 

considering that ISEAGE will inevitably continue to grow. For this reason the following 

changes and add-ons to the ISEMasq design are suggested so that performance and ease 

of use keep pace with the further development of ISEAGE. First it may be beneficial to 

try using an unsorted-map data structures instead of the current STL map structure, 

especially for the larger internal databases. Slated for release as part of TR2, the unsorted 

map will finally provide the C++ STL with a hash table based structure, thus allowing for 

constant time lookups and insertions. 

Next, in order to integrate with DeepFreeze, two tasks need to be done. First, a 

GTK+ front-end needs to be designed and written to work with the DeepFreeze console. 

GTK+ is a developer toolkit for creating graphical user interfaces [23]. This task will 

require creating a single GTK+ window that implements the function stubs defined by the 

DeepFreeze API, and provides full configuration control for the ISEMasq tool. The 

traditional way of creating this interface would be to code it entirely in C/C++. However, 

the latest version of Glade (Glade-3) [24], the most used User Interface Designer for 

GTK+, has deprecated the generation of C code in the interface creation process in favor 

of the libglade approach [25]. This new approach only requires the base framework to be 

written in C/C++ while the actual interface is done in XML and loaded dynamically at 

run-time, thus and increases flexibility and reusability while greatly reducing 

development time. The resulting interface then needs to be compiled as a loadable 

module that the DeepFreeze Console will read in and add as a tab to the main control 
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interface. Additionally, the DeepFreeze Console configuration file will need to be 

appended with the specific ISEAGE nodes that the new tool is to run on. 

Finally, in order for the loadable console to control the remote tool once 

DeepFreeze has launched it, the command line version of ISEMasq (as it exists now), 

needs to be modified to read and write data over the DeepFreeze communication channel. 

DeepFreeze conveniently sets these channels up to simply be stdin and stdout, though the 

programmer of the tool needs to come up with his/her own payload format for the data. 

To this end, the configuration of the tool will no longer be done from the command line 

of each ISEAGE node running the tool, but rather pushed down from the front-end 

control console. Once completed the ISEMasq Console plug-in for DeepFreeze will be 

able to control all instances of ISEMasq from the loaded interface module. 
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7 Conclusion 

While there is some additional work that can be done to further improve 

ISEMasq, it is mostly cosmetic, such as the DeepFreeze interface or common code 

polishing to eliminate any minor bugs. As it stands, the command line version of 

ISEMasq has quite successfully met the current design goals. To compliment this, the up-

and-coming upgrade to ISEAGE, a.k.a. ISEAGE 2.0, will provide new hardware, 

including multi-core processors on each of the ISEAGE nodes. Not only will this upgrade 

benefit all the ISEAGE tools in general, it will specifically benefit ISEMasq due to its 

multithreaded design, which can take full advantage of the multi-core processors. 

With the goals met and the desired functionality of ISEMasq and its components 

firmly in place, the core framework for the ISEAGE testbed is finally near completion. 

This framework, i.e. Layers 1 and 2, complimented by Layer 0, should contribute 

significantly to the further completion of ISEAGE and will hopefully lead to a bright 

future of further development and testing of security products and concepts. 
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Appendix A: Data Class Header File 

#ifndef ISEMasq_DS_H 
#define ISEMasq_DS_H 
 
#include <arpa/inet.h> 
#include <stdint.h> 
#include <ctime> 
#include <cstdlib>  //rand() 
#include <iostream>  //cout & such 
#include <string> 
#include <deque>  //double ended que from STL 
#include <map>   //one-to-one mapping from STL 
 
struct Node { 
 uint32_t ip_addr; 
 time_t time_stamp; 
}; 
 
class masq_ds  
{ 
  public: 
  //Constructor and Destructor, wii...=) 
   masq_ds(); 
   ~masq_ds(); 
 
  //Member Functions for DNS mode 
   uint32_t Lookup_IP(std::string url);   //dns_thread 
   std::string Lookup_URL(uint32_t ip);   //dns_thread 
 
  //Member Functions for Gtw mode 
 void Set_Default_Dst(uint32_t dst_ip);  //main() 
   void Add_Dest(uint16_t port, uint32_t dst_ip); //main() 
 
 void Update_DS(uint64_t key, uint32_t dst_ip); //In_thread  
 uint32_t Lookup_Dst(uint16_t dst_prt);  //In_thread 
 void Process_Que();     //In_thread 
 uint32_t Lookup_Src(uint64_t key);   //Out_thread 
 
  //Stat Functions 
 int get_map_size() { return main_map.size(); }  //Stat_thread 
 int get_que_size() { return purge_que.size(); }  //Stat_thread 
 int get_dns_size() { return dns_map.size(); }  //Stat_thread 
 
  private: 
  //member vars and data structures for DNS functionality 
 uint32_t max_dns_size; 
   std::map<std::string, Node> dns_map; 
   std::map<uint32_t, std::map<std::string, Node>::iterator > dns_rev_map; 
 std::deque< std::map<std::string, Node>::iterator > dns_que; 
    
  // member vars and data stuctures for Gtw funcionality 
 uint32_t default_dst, max_que_size; 
 std::map<uint16_t, uint32_t>::iterator dst_it; 
   std::map<uint64_t, Node> main_map; 
   std::map<uint16_t, uint32_t> dst_map; 
   std::deque< std::map<uint64_t, Node>::iterator > purge_que;  
}; 
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Appendix B: ISEMasq Example Config File 
 
################################# 
## ISEMasq example config file ## 
################################# 
 
Wan_if = rl0 
Lan_if = ed0 
 
# 1 is DNS only, 2 is GTW only, and 3 is Both 
Run_mode = 3 
 
# If the run mode is DNS(1) or Full(3), 
# then any port 53 Dst_Server entries will be ignored 
 
# All desired mappings in form IP_addr:Port 
Dst_Serv = 128.32.8.1:53 
Dst_Serv = 64.32.16.8:80 
Dst_Serv = 1.2.3.4:80 
Dst_Serv = 5.6.7.8:22 
 
# Any ports that are specifically mapped above are randomly sent 
# to one of the Dst_Serv enties unless this is set. 
# Default_Serv = 1.2.3.4 
 
# Setting this will enable service rotation for any Dst_Serv 
# entries that use the same port, such as port 80 above; 
# otherwise only the first entry of port 80 is used. 
# Serv_Rotation = 1 
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