
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2007

Internet scale endpoint masquerading
Thad Michael Gillispie
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Gillispie, Thad Michael, "Internet scale endpoint masquerading" (2007). Retrospective Theses and Dissertations. 14656.
https://lib.dr.iastate.edu/rtd/14656

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14656&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F14656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F14656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F14656&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=lib.dr.iastate.edu%2Frtd%2F14656&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/14656?utm_source=lib.dr.iastate.edu%2Frtd%2F14656&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Internet scale endpoint masquerading

by

Thad Michael Gillispie

A thesis submitted to the graduate faculty

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-Majors: Computer Engineering; Information Assurance

Program of Study Committee:
Douglas Jacobson, Major Professor

Thomas Daniels
Clifford Bergman

Iowa State University

Ames, Iowa

2007

Copyright © Thad Michael Gillispie, 2007. All rights reserved.

www.manaraa.com

UMI Number: 1447508

1447508
2008

UMI Microform
Copyright

All rights reserved. This microform edition is protected against
 unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
 Ann Arbor, MI 48106-1346

 by ProQuest Information and Learning Company.

www.manaraa.com

 ii

Table of Contents

List of Figures iv

Abstract v

1 Introduction 1

1.1 Testbeds..1

1.2 Motivation ..3

2 Related Work 5

2.1 ISEAGE overview...5

2.2 ISEAGE projects...7

2.2.1 DeepFreeze...7

2.2.2 Traffic Mapper ...8

2.2.3 Packet Mangling...9

2.2.4 Traffic Generation ..9

2.3 Related Technologies ..10

2.3.1 Routing...11

2.3.2 Network Address Translation ...11

2.3.3 Domain Name System ..13

3 Design Overview 15

3.1 Goals...15

3.2 ISEAGE Integration..17

3.3 Assumptions ...22

4 Architecture 24

4.1 Programming Framework..24

4.1.1 Libpcap ..24

4.1.2 Libnet...25

www.manaraa.com

 iii

4.1.3 Standard Template Library ...26

4.1.4 Boost ..27

4.2 General Considerations ...28

4.2.1 Network Device Type...29

4.2.2 Threads and Packet Capturing ..30

4.3 Alternate Approaches..32

4.3.1 Gateway ...33

4.3.2 DNS ...34

5 Implementation 36

5.1 Virtual Endpoint Gateway...37

5.2 Virtual DNS Endpoint...39

5.3 Additional Features ...41

6 Future Work 43

7 Conclusion 45

Appendix A: Data Class Header File 46

Appendix B: ISEMasq Example Config File 47

References 48

Acknowledgements 50

www.manaraa.com

 iv

List of Figures

Figure 3.1: Small Toplogy...18

Figure 3.2: Large Toplogy...19

Figure 3.3: Small Topology Simplified..20

Figure 3.4: Large Toplogy Simplified..21

Figure 4.1: Overall architecture and data flow of a typical software approach................31

Figure 5.1: Implementation Overview ...36

Figure 5.2: Gateway Flow ...38

Figure 5.3: DNS Flow ...40

www.manaraa.com

 v

Abstract

To keep up with the security needs being exerted by the ever-increasing

complexity of technology, new ideas and approaches are needed. Once such attempt to

address this is the Internet Scale Event and Attack Generation Environment (ISEAGE) at

Iowa State University (ISU). ISEAGE is a next generation Internet testbed that hopes to

provide researchers with the tools and resources necessary to address the every vexing

security issues in today’s world. Among the many challenges involved with creating an

Internet scale testbed is how to realistically virtualize the thousands of servers that make

up the various destinations or endpoints on the Internet. To specifically address this

problem, the Internet Scale Endpoint Masquerading tool (ISEMasq) was developed.

ISEMasq is an integral part of ISEAGE that enables a small set of servers with off-the-

shelf software to pose or masquerade as any number of actual Internet destinations. To

accomplish this, ISEMasq leverages various API functionality from the current and

upcoming release of the ISO C++ standard, as well as other widely used and accepted

third-party C and C++ networking APIs. The result is a highly reliable, performance

driven, packet level network tool that brings ISEAGE one step closer to completion.

www.manaraa.com

 1

1 Introduction

Modeling the vastness of the Internet with its millions of destinations is a

complex and seemingly impossible task, though it is necessary in order to create a

realistic testbed environment. However, what if it were possible to masquerade a small

set of endpoints as countless thousands of actual endpoints? The development of the

Internet Scale Endpoint Masquerading tool (ISEMasq, pronounced: [ice-mask]) makes

this illusion possible. Before discussing the details of how this is done, it is first

necessary to provide groundwork and background information further detailing testbeds

and the project’s motivation.

1.1 Testbeds

As technology grows and advances so too grows our dependency on it; ever

affecting and integrating with day-to-day life. A prime example of the growth of this

complex relationship is the extensive use of the Internet for communication and sharing

of products and ideas. As the interdependency between technology and daily life

increases, it becomes even more critical to ensure the reliably and security of this

infrastructure. However, the increased complexity of modern technology as well as our

dependency is also increasing the difficultly of developing and effectively testing new

security technologies. Undertaking this enormous task will require new approaches and

ideas as well as the creation of versatile testbed environments that allow modeling and

testing of large or complex networks. According to a report published in 2005 by the

President’s Information Technology Advisory Committee, one of the top ten areas

needing increased research and development is “modeling and testbeds for new

technologies” [1]. Such testbeds would provide a host of opportunities for furthering

www.manaraa.com

 2

security education as well as security product development [2]. To that end, the

committee feels that:

“One of the barriers to the rapid development of new cyber security

products is the paucity of realistic models and testbeds available for

exercising the latest technologies in a real-world environment [1].”

In order to facilitate and ensure the future of a society that places such a high

emphasis on technology, it is necessary to development new testbed environments that

better simulate the real world. The creation of such a virtual Internet represents a new

paradigm in the area of security research and cyber forensics, and it will enable new and

innovative research needed to solve the current security problems facing the world today.

These environments will be essential in both industry and education. Being able to better

model a real-world setting will make it easier to educate new IT security students without

endangering real networks. Additionally it will allow industry to more thoroughly test

new security products to help ensure that they operate effectively before testing them in a

real environment. This will help alleviate the risk of accidental damage to equipment or

information during the training of students or during the testing and development of new

security products and devices [2].

That said, the Internet modeling problem is challenging, mostly because of the

Internet's scale and complexity. In other words, how does one model or simulate the

vastness of the Internet with only a limited amount of resources? The Internet is vast,

made up of millions of pieces of computer hardware (switches, routers, PCs and servers).

Though if one takes the point of view from each device’s perspective, there isn’t much in

the way of hardware, mostly just the signals that come to/from it from other devices

www.manaraa.com

 3

somewhere out there in cyber-space. With this perspective in mind, it is possible to lay

out the various signal characteristics as just a few functional layers.

The communication of any two remote devices across cyberspace can be broken

down into three simple layers. Layer 1 represents a sort of traffic control and basic

infrastructure; it is comprised of a mass of interconnected routers that form the backbone

of the Internet. Layer 2 contains more infrastructural features, specifically the address

translation—DNS—and destinations. Layer 3 is then all the traffic; it is the client and

network applications that utilize Layers 1 and 2 to accomplish their tasks. The

combination of these three layers forms a fairly realistic yet manageable representation of

the Internet in that it readily illustrates how ISEMasq is integrated into an Internet

testbed. ISEMasq is specifically concerned with the mechanisms of Layer 2, so further

discussion will be focused on primarily this layer.

1.2 Motivation

To specifically address the issues with representing Layer 2, it should first be

broken down into two pieces as alluded to above. The first piece is DNS. This allows for

an application to determine the address of the URL it wishes to contact. With address in

hand, the second piece is needed: the destination. DNS tells a signal where to go and the

destination gives it somewhere to actually go to as it traverses Layer 1. Both pieces of

Layer 2 are an important part of an effective testbed environment. In order to accurately

test a security solution, one needs traffic of all sorts, and traffic needs somewhere to go.

Specifically, somewhere that can actively respond, otherwise it would be as if the phone

rings forever with no one answering.

www.manaraa.com

 4

Such a fully reactive destination is the very essence of ISEMasq. ISEMasq

provides large-scale endpoint objects without needing hundreds of actual machines by

emulating multiple machines and/or networks including the name resolutions of those

endpoints. ISEMasq is designed specially for integration with the Internet testbed

research project at Iowa State University. The project is an ambitious attempt to meet the

needs and challenges of an Internet scale testbed.

www.manaraa.com

 5

2 Related Work

2.1 ISEAGE overview

The Internet Scale Event and Attack Generation Environment (ISEAGE) is a first

of its kind facility in a public university dedicated to creating a virtual Internet [3]. To

fully understand the implication and importance of the work discussed in this thesis, it is

essential to first have a clear and complete understanding of the vision of ISEAGE, its

design, and the fundamental underpinnings needed to realize that design.

As a next-generation testbed, ISEAGE breaks away from traditional computer-

based simulations and allows for researchers to perform realistic attack scenarios against

different configurations of real equipment in a controlled environment [3]. ISEAGE is

meant to simulate the proverbial Internet bubble on most topology diagrams, with all the

eccentric traffic that comes with it. In essence, ISEAGE will provide many new tools for

testing cyber defense mechanisms and even helping to solve cyber crime. As such, part of

the design goal ISEAGE is to be a highly configurable environment than can model any

aspect of the Internet [3].

The core of ISEAGE is a 64-node rack cluster that can be configured to support a

variety of virtual networks. It is to be designed with multiple copies of each component

such that configuration is scalable and can be changed quickly. Basically, each of the 64

nodes can run at least one of the tools/models and if needed, be divided up in order to run

multiple experiments on separate virtual networks. This will also allow for multiple

research experiments to be carried out at the same time in separate Virtual Subnets or for

a single very large experiment to be carried out in a single or multiple Virtual Subnets.

www.manaraa.com

 6

Because ISEAGE is designed specifically for use in security research it offers

many advantages over a conventional network testbed. The primary advantage is that the

set of tools used with ISEAGE, such as ISEMasq, will be designed for the ISEAGE

testbed. ISEAGE will contain a vast warehouse of attack tools that will be able to

simulate point-to-point and distributed attacks. It can also be used to recreate critical

components of an infrastructure on an ongoing basis. The goal is to develop algorithms

and methods to harden the networks and computers used to support the critical

infrastructure. These live models of the infrastructure can be subjected to constant attacks

in order to probe for weaknesses. Additionally the models will provide a means of

replaying attacks, recreating a cyber crime scene, and evaluating new attacks before they

become a threat to actual infrastructure [3].

To better illustrate the development of ISEAGE, one can apply the layered

Internet model discussed previously with a few additions. It is important to note that

although this layered model does a good job representing ISEAGE, it does in some ways

oversimplify some of ISEAGE’s features. Layers 0 & 4 as seen below, are ISEAGE

specific layers that effectively wrap around the Internet layer model and give a more

practical testbed view. The resulting implementation is divided into five distinct layers

where each one relies on the previous layers in order to function.

Layer 0: Command and Control

Layer 1: Routing

Layer 2: DNS & Traffic Endpoints

Layer 3: Traffic Generation & Attack Tools

Layer 4: Security Projects & Systems Under Test

www.manaraa.com

 7

From this layered illustration one can see that in order to simulate the Internet,

ISEAGE needs to provide for the core functionality of the Internet. Layers 1 and 2 above

represent these fundamental components and are essential for all the other layers to be

effective and successful. In short, the completion of these components is essential to

facilitating the ultimate goals of ISEAGE. Additionally, this core functionality needs to

be able to handle the demand of the tools and test projects that will be run on it; because

unlike computer-based simulations, ISEAGE will allow for real attacks will be played out

continuously against different configurations of real equipment. While this work fulfills

the Layer 2 needs as will be discussed in detail in later sections, an overview of the

solutions for the other layers follows in the next section.

2.2 ISEAGE projects

There are a number of projects that have been developed to facilitate the

completion of the core layers of ISEAGE. ISEMasq relates and/or interacts directly with

each of the following tools.

2.2.1 DeepFreeze

Developed by Nate Karstens, DeepFreeze is the proverbial Layer 0 of ISEAGE. It

was developed to facilitate a graphical command and control interface for the ISEAGE

project. In addition to assisting the user in monitoring and controlling ISEAGE

applications, it provides ISEAGE developers with an extensive application program

interface (API) for authoring and controlling applications executing within the ISEAGE

environment. DeepFreeze also provides a degree of fault tolerance to ISEAGE

www.manaraa.com

 8

applications and facilitates communication between the applications and their controlling

interface [4].

In the simplest terms, a DeepFreeze-Daemon (DFD) runs on each of the nodes

within ISEAGE, allowing the central DeepFreeze control console to configure and launch

applications on each node as needed for a given experiment. The only caveat to this

elegant solution is that in order for each tool or application to take full advantage of

DeepFreeze, a graphical front-end must be written and then the tool needs to leverage the

DeepFreeze API so that this front-end can communicate with and control the tool.

Though this is a little more difficult for some of the older ISEAGE tools because they

need to be reworked to use DeepFreeze, it should be fairly straightforward for future

projects, and in the end will greatly improve many aspects of running experiments on

ISEAGE.

2.2.2 Traffic Mapper

Currently, the Traffic Mapper, written by Dr Douglas Jacobson, handles the Layer

1 responsibilities for ISEAGE. The Traffic Mapper is in many ways the heart of

ISEAGE, as it is responsible for mimicking the route topology. It is essentially a piece of

software that can model the behavior and topology of routers allowing the creation of the

Virtual Subnets. The Traffic Mapper can act as a set of virtual routers so that traffic

appears to have routed through the Internet. It can simulate approximately 50

routers/routes per board that are then connected via the board backplane to create very

large network topologies.

The Traffic Mapper will most likely be run on a majority of the ISEAGE nodes,

as it is key to representing the topology. Then additional tools/models would be run on

www.manaraa.com

 9

the remaining nodes for that subnet, and the systems under test would then be connected

to this mini Internet. While a graphical front end is planned for the Traffic Mapper, the

functionality is complete and it is in limited use, awaiting the completion of more

supporting tools.

2.2.3 Packet Mangling

The Advanced Packet Obfuscation and Control Program (APOC), also known to

ISEAGE as the packet changer/responder, was developed in 2005 by Adam Hahn [5]. It

can be used to modify packets in real-time as they flow through the network allowing for

a wide range of possibilities, from performing man-in-middle attacks to simply testing

protocol resilience by introducing random errors. Its use was at one time considered as a

way to fill the need of endpoint masquerading since it is capable of many types of packet-

level manipulation. However APOC was designed to facilitate much more generic and

reconfigurable packet modification. This generic solution, while effective for the

purposes of APOC, also suffers from many performance issues that limit its use as a

large-scale endpoint masquerading tool. While APOC is designed to only tap select

points in the ISEAGE network, for a variety of purposes, the design needs of ISEMasq

are for a specific purpose and much more demanding in the area of performance as is

discussed in Chapter 3. This distinction, though, in no way should reflect badly on APOC

as it is a highly versatile tool that provides many unique capabilities to ISEAGE.

2.2.4 Traffic Generation

Traffic generation for ISEAGE is a multipart project that consists of a statistical

model or generator and various mechanisms for feeding the model. At its center is the

Markov Traffic Generator (MTG), which is an application-level traffic generation tool

www.manaraa.com

 10

that scripts network applications based on usage statistics of a specific or average set of

users. Unlike many alternate approaches that operate at the packet level, it follows a

unique approach of generating background traffic at the session level by leveraging

various user applications [6]. As such, the MTG is application dependent and is able to

generate various types of TCP traffic, representative of typical network traffic, in effect

providing statistically governed user drones.

Despite these important features of the MTG, there are a couple key factors

missing that limit its current usefulness to ISEAGE. First is how to get the statistics to

feed to the MTG. While it is possible, and in some cases desirable, to hand feed the

model with specific traffic statistics, it is also necessary to have realistic traffic patterns.

For this reason, an additional tool currently in development called the traffic collector is

needed to capture traffic patterns from the actual Internet at particular locations so they

can be replayed within ISEAGE using the MTG. This tool will often be used to gather

information about traffic patterns at a client’s network, which are then used as the

statistical parameters for the MTG so that ISEAGE can recreate those patterns.

The second limitation, and more important to this work, is the need for actual

endpoints in order for it to fully function. Since the MTG works above the transport layer

it needs actual destination servers to interact with in order to fully represent user behavior

and resulting traffic.

2.3 Related Technologies

The following networking technologies and terminology are important to

understand before discussing the design of ISEMasq, as it relies heavily on various

aspects of each.

www.manaraa.com

 11

2.3.1 Routing

Routers represent the lowest functional layer of the Internet as discussed in

Chapter 1 and are responsible for the source to destination delivery of packets across one

or multiple networks [7]. Routing is often confused with bridging, which performs a

similar function. The principal difference between the two is that bridging occurs at a

lower level and is therefore more of a hardware function, whereas routing occurs at a

higher level allowing for more complex analysis to be performed in order to determine

the optimal path for the packet.

Routing is a key feature of the Internet because it enables messages to pass from

one network device to another through the use of routers to eventually reach the target

machine. Each intermediary device performs routing by determining the proper path for

data to travel between different networks, and then forwarding data packets to the next

device along this path. To determine this next hop, a router compares the packet’s

destination IP address to an internal lookup table and then sends it on its way; the IP

addresses in the packet are never modified, as that is a feature more associated with

Network Address Translation (NAT) [7]. As an aside, it is common today to find devices

that can both route and perform NAT; conceptually though they are separate tasks. NAT

is described in more detail in the next section.

2.3.2 Network Address Translation

Network Address Translation (NAT), sometimes referred to as IP masquerading,

is a very important and relevant concept to the development of ISEMasq. NAT is

described in RFC 1631, and extended by RFC 3022 [8]. RFC 3022 extends address

translation introduced in RFC 1631 and includes a new type of network address and

www.manaraa.com

 12

TCP/UDP port translation. Most systems using NAT do so in order to enable multiple

hosts on a private network to access the Internet using a single public IP address [9].

The term ‘NAT’ is commonly used to refer to a network device that performs the

translation. The operation of a basic NAT capable device is deceptively easy to describe

in general terms. It is an active unit placed in the data path, usually as a functional

component of a border router or site gateway. In the simplest terms, a NAT rewrites the

source and/or destination addresses of IP packets as they pass through. It intercepts all IP

packets and may forward the packet onward with or without alteration to the contents of

the packet, or it may elect to discard the packet.

The essential difference here from a conventional router or a firewall is the

discretional ability of the NAT to alter the IP packet before forwarding it on. NATs are

similar to firewalls, and different from routers, in that they are topologically sensitive.

They have an "inside" or local area network (LAN) and an "outside" or wide area

network (WAN), and they undertake different operations on intercepted packets

depending on whether the packet is going from inside to outside or vice versa.

When traffic is processed from inside to outside it is referred to as an outbound

NAT, and when its processed from outside to inside its an inbound NAT. A traditional

NAT performs outbound NATing first and inbound NATing on the return traffic whereas

a reverse NAT performs inbound first, and then outbound. This is an important

distinction, as the direction that is NATed first sets up the address records for maintaining

that connection.

In a traditional NAT, when a packet is being passed in the direction from the

inside to the outside, a NAT rewrites the source address in the packet header to a

different value, and alters the IP and TCP header checksums in the packet at the same

www.manaraa.com

 13

time to reflect the change of the address field [9]. When a packet is received from the

outside destined for the inside, the destination address is rewritten to a different value,

and again the IP and TCP header checksums are recalculated.

In a reverse NAT, traffic is initiated on the WAN and passed through the NAT

device to an internal server. There are a couple types of reverse NAT. First is a one-to-

one or DMZ host, in which all externally initiated traffic is sent to a single internal

machine. The second type is more discriminate and in some cases referred to as port

translation. In this approach the traffic is port forwarded to a specific internal machine

and port number based on the destination port number in the originating traffic.

In both types of reverse NAT, when an incoming packet arrives on the external or

WAN interface, the destination address is checked. If it is one of the NAT pool addresses,

the NAT box looks up its translation table. If it finds a corresponding table entry, the

destination address is mapped to the local internal address, the packet checksums are

recalculated, and the packet is forwarded. If there is no current mapping entry for the

destination address, the packet is discarded.

2.3.3 Domain Name System

The primary use of the Domain Name System (DNS) is to translate hostnames to

IP addresses, making it the proverbial phonebook for the entire Internet. For example, in

order to find the Internet address of www.iseage.org, DNS can be used to determine that

it is 129.186.207.10.

The domain name space consists of a tree of domain names. Each node or leaf in

the tree has one or more resource records, which hold information associated with the

domain name. The tree sub-divides into zones. A zone consists of a collection of

www.manaraa.com

 14

connected nodes managed by an authoritative DNS server. DNS distributes the

responsibility for assigning domain names and mapping them to IP networks by allowing

an authoritative server for each domain to keep track of its own changes, avoiding the

need for a central registrar to be continually consulted and updated [10].

For example, .edu would be a root server node, and under it would be iastate, uni,

and even uiowa servers, to name a few. Then at each university there could be

engineering, business, or agricultural sub domain servers. These in turn could be broken

down even further as needed. The end result is a URL like ece.eng.iastate.edu. For

someone at another university to look this up, (and assuming all the cache is cleared)

their computer would contact its DNS server, which would eventually contact the .edu

root, which would ask the iastate node and on down to the lowest level DNS server that

actually has the IP address needed to allow communication with the Electrical and

Computer Engineering department’s web server. The main thing to take away from this is

that once the initial request is made to the user’s immediate DNS server, the rest happens

behind the scenes, with the user only being aware of the time it ends up taking to get a

response.

This however is only a small example; the entire DNS architecture is even more

complex, and most of the related details are beyond the scope of this work. What is

important, however, is the functionality that is provided to the user and not so much how

it is provided. To this end, one of the goals of ISEMasq is to mimic the functionality of

DNS at the user level without the complicated architecture.

www.manaraa.com

 15

3 Design Overview

3.1 Goals

The main goals of ISEMasq can be briefly summarized into functionality,

performance, and flexibility. From a general perspective, ISEMasq needs to incorporate

the functionality of routing, inbound NAT, and DNS. In order to best accomplish this,

ISEMasq will be divided into two components: a virtual DNS endpoint and a virtual

endpoint gateway. The functional requirements of these two components need to be as

follows:

1) The virtual DNS endpoint should be a scalable, demand-driven custom DNS

server for ISEMasq. While it needs to perform common DNS functionality in the

form of user queries, the backend will be anything but a traditional DNS server.

The name records will not exist as usual nor will they have the same temporal

requirements.

2) The virtual endpoint gateway functionality should masquerade a small set of

endpoints as many. As such, ISEMasq’s design will be specialized for this task

and will be implemented at the IP layer so as to have no more impact on the

network throughput than either a router or NAT. Also, unlike NAT, it will do port

forwarding ubiquitously instead of based on the destination IP.

The virtual endpoint gateway component of ISEMasq will be very similar to a

reverse NAT but will accept all traffic regardless of the destination IP address as long as

the destination MAC is correct, much like a router. As such, it should have two

www.manaraa.com

 16

interfaces, a WAN and a LAN, much like a NAT, with the WAN interface being the side

connected to ISEAGE.

In addition to being able to handle both UDP and TCP traffic types, the traffic

going to and from the WAN interface of ISEMasq needs to remain realistic from the

transport layer on down. If one were to capture the traffic at the WAN interface it should

appear to be heading to numerous different destinations, even though it is condensed to

only a few actual endpoints on the LAN side.

Since ISEMasq will be directly connected to the Traffic Mapper as the next hop in

the traffic route (as illustrated in the next section), it needs to handle at least as much

traffic as a single Traffic Mapper is capable of handling and do so in near real-time.

Specifically, ISEMasq is designed to masquerade as a border router and all subsequent

endpoints within; therefore it needs to be able to handle the volume of traffic

characteristic of all the endpoints it is simulating. For this reason, it’s easy to see how

performance is not only crucial, but in fact critical to ISEMasq.

While the DNS and gateway functionality of ISEMasq are in many ways separate

components, they will be combined into a single tool. By doing so and providing three

running modes, it actually increases the flexibility and effectiveness of the tool. Having a

single application will allow for simpler command and control while maintaining the

intended functionality. The three run modes are as follows:

1) DNS Endpoint Only

2) Endpoint Gateway Only

3) Both 1) & 2)

www.manaraa.com

 17

In other words, when running a large-scale experiment on ISEAGE, the

researcher will not have to have to configure separate tools, but one. Since the endpoints

and DNS are network dependent on one another, one can’t practically exist without the

other anyway. For example, first consider ISEMasq is running in Mode 2. If URL-based

communication with the endpoint(s) is desired, then somewhere on the ISEAGE network

ISEMasq will have to be running in either Mode 1 or 3. Conversely, if ISEMasq is

running in Mode 1 and replies to IP traffic are desired, then an endpoint is needed

somewhere on the network. Additional topology flexibility from offering two modes of

operation can be seen in the next section.

3.2 ISEAGE Integration

Starting with the network topology layer that is provided by the Traffic Mapper, it

is now worthwhile to discuss how ISEMasq works with it to provide other tools or test

systems plugged into ISEAGE the destinations they need to connect to, as discussed in

the Introduction. Like the other tools of ISEAGE, ISEMasq will run on one of the many

ISEAGE nodes and process all IP traffic that is sent to it, regardless of the destination IP.

To this end, ISEMasq will rely on the Mapper and its associated topology to route traffic

to it. For example, ISEMasq could be connected to the default route of the Traffic

Mapper(s), or any other subnet endpoint that exists at the edges of the Mapper topology.

From the Mapper’s perspective ISEMasq will simply be seen as another router,

though once the traffic reaches ISEMasq it is processed in one of two unique ways

depending on the run mode. First, if the traffic is DNS and the DNS mode is enabled,

then a lookup is performed and a response is generated. Otherwise, the traffic is

processed very similarly to an inbound NAT and forwarded to a designated server

www.manaraa.com

 18

connected behind ISEMasq. In both cases, the traffic is essentially condensed to a single

set of servers and services behind ISEMasq without the ISEAGE network at large being

aware of it. To illustrate this setup as well as other possible ways to integrate ISEMasq

into the ISEAGE network, consider the following simple topology given in Figure 3.1.

Figure 3.1: Small Toplogy

Here R1 and R2 are routers, C and S represent a Client and Server pair and M is

ISEMasq running in Mode 3. When placed between R2 and S, ISEMasq simply needs to

be treated as a router would, such that the next hop for both R2 and S point to M instead

of each other. With this simple topology example in mind, now consider what an actual

Internet topology might look like in Figure 3.2 below.

Notice that in Figure 3.2 that there are two instances of ISEMasq, one as just a

gateway (Mode 2) and one as just DNS (Mode 1). While it is possible to combine them,

as will be discussed later in this section, this helps illustrate the variety of integration

options. Also note that ISEMasq could be connected to any router in Figure 3.2 with the

exception of the red router, marked R0. This is due to redundant route paths around R0,

so that if ISEMasq were hooked to it, other connections would be left disconnected and in

need of rerouting.

www.manaraa.com

 19

Figure 3.2: Large Toplogy

In both of the above examples, ISEMasq is essentially acting as the border router

for the destinations that it is masquerading for. When inserted into a topology to act as

said destinations, one of two setup approaches can be taken. First, one could simply

modify the next hop of the first upstream router (i.e. R1 in both examples) to point to the

IP address of ISEMasq instead of the address of the original border router. Or, one could

just use the original router’s IP address on the WAN interface of ISEMasq, thus

eliminating any modifications to R1.

Since ISEMasq was specifically designed to create the illusion of many servers

and routers existing on a network it helps make it possible to simulation of large network

www.manaraa.com

 20

topologies without requiring the footprint of a large topology. In other words, not only

can ISEMasq reduce the number of actual endpoints needed for a simulation, it can also

reduce the number of route points leading to a set of destinations. Going back to Figure

3.1, assuming for the moment that topology is not as important (as it might be in some

experiments), it becomes possible to reduce the setup to its simplest form as seen in

Figure 3.3. When this same reduction is done to the more realistic Internet topology

(Figure 3.2), the resulting topology, although functionally the same, is now much simpler

to model as seen below in Figure 3.4. Notice that the two instances of ISEMasq were

condensed while maintaining their functionality by running a single instance in Mode 3.

Figure 3.3: Small Topology Simplified

Regardless of the location in the route path, ISEMasq will always have the WAN

interface toward the client and the LAN toward the server. The WAN is labeled as such

since all traffic off that interface is as it would be on the actual Internet, i.e. any and all IP

addresses are expected to be seen there. The LAN interface, on the other hand, only

expects to see the IP addresses of the servers, which will most likely be on the same

subnet. While it is possible to put multiple servers on multiple subnets and add an alias IP

for each on the LAN interface, it is not necessary to the functional performance of the

ISEMasq, and in fact just over-complicates the setup.

www.manaraa.com

 21

Figure 3.4: Large Topology Simplified

Finally, ISEMasq was designed so that the server(s) behind it could be any off-

the-shelf solutions. One could even run ISEMasq in Mode 2, and then add an actual DNS

server to the Server pool, maybe even with caching or forwarding to the real Internet. It

would even be possible to run some sort of web-proxy service, intrusion detection system

(IDS), or any other specific type of server platform for development and testing; the

possibilities are really quite vast. See Section 5.3 for even more ideas.

www.manaraa.com

 22

3.3 Assumptions

During the design phase it became clear that much of the functionality and

performance of ISEMasq would depend on the backend data structure needed for tracking

unique connections. Since this connection mapping of the traffic is the most critical and

resource-intensive part of the design, many of the assumptions largely revolve around the

underlying data structure.

The first of these is the assumption that all client OSs that initiate connections

though the gateway will behave in a typical manner, such that they will use a new socket

and source port pair for each outgoing connection to a specific destination. Failure of a

client to do so will result in the database losing track of where the connection originated.

Furthermore, and more importantly, it is assumed that the client does not reuse the same

socket to connect to a different destination until the database has flagged the old

connection as stale and purged it.

Secondly is the assumption that there will be no need for long-standing

connections without data flow. In this sense it means that the state of the connection

information in the database has limited state, and will quickly timeout when idle. This is

due to the fact that the virtual endpoints are to mainly serve as hosts that the application-

level packet generation model (e.g., the MTG) or attack tools can bounce traffic off of.

Finally, the worst-case scenario is considered: a very large SYN scan. To the

software, this could have the effect of a denial-of-service attack because it would increase

the size of the connection database quite rapidly. While there is a timeout built into the

database, it can’t be very aggressive since it would destroy many normal connections. To

address this, a database limit was added. Basically, in addition to checking the database

for stale entries as laid out in the next section, the program should additionally check that

www.manaraa.com

 23

the database hasn’t exceeded its maximum size. If it has, then and only then are entries

that have not reached their maximum lifetime overwritten.

www.manaraa.com

 24

4 Architecture

In general, ISEMasq consists of various API functionality from the current and

upcoming release of the ISO C++ standard, as well as other widely used and accepted

third-party C and C++ networking APIs. The resulting architecture not only has

programming framework considerations, but also other logistical considerations relating

to functionality and how it compares to alternative approaches.

4.1 Programming Framework

ISEMasq was designed and written in C++ with a few C-based APIs. The use of

the C family of computer languages allowed for the low-level control and speed needed

as well as providing access to high-quality libraries. These libraries helped facilitate

development, resulting in fewer bugs, reduced reinvention-of-the-wheel, and lower long-

term maintenance costs. This section discusses the main libraries and APIs used in the

design and development of ISEMasq. These APIs were instrumental in the development

and include libpcap, libnet, the Standard Template Library and the Boost library.

4.1.1 Libpcap

The libpcap API provides a framework for capturing packet traffic from the

network. Many different open source tools use this library in their development including

TCPdump and Snort [11]. Using libpcap to capture traffic is commonly referred to as

sniffing. Often times a sniffing application may only be interested in specific traffic, such

as telnet, FTP, or DNS. Whatever the case, it is rarely useful to just blindly sniff all

network traffic. Fortunately libpcap provides the developer a unified, easy-to-use

interface for filtering the traffic it sees. And, because libpcap’s filters interact behind the

www.manaraa.com

 25

scenes directly with system specific filtering mechanisms, it is far more efficient than

filtering traffic manually, which involves numerous steps. Because of this performance

and its solid API, libpcap is a perfect fit for the incoming communications needs of

ISEMasq, and when combined with libnet, enables the bidirectional flow of traffic that

ISEMasq must provide.

4.1.2 Libnet

Libnet is a high-level API that allows the application programmer to construct and

inject network packets. It provides a portable and simplified interface for low-level

network packet shaping, handling and injection [12]. As such it was a perfect fit for the

development of ISEMasq especially when combined with libpcap.

The libnet library has a number of injection modes that it can run in depending on

what level of injection control over the network stack is needed. The two options for the

Gateway component of this project were the advanced modes of the standard

LIBNET_RAW and LIBNET_LINK modes, or LIBNET_RAW_ADV and

LIBNET_LINK_ADV, respectively. The advance modes are necessary since libnet is not

being used to build the packet, but merely to write out the ones modified from the libpcap

capture. By initializing libnet in advanced mode it is then possible to use the

libnet_write_raw_adv() function call is used instead of libnet_write(). This variant of the

libnet_raw_adv() injection call is only available in version 1.1.3+.

The DNS component on the other hand used LIBNET_RAW instead, since the

reply packets had to be constructed mostly from scratch, and the regular mode provides

functionality that nicely assists the packet creation process at each network layer. If either

the standard or advanced version of the LINK mode were used for either component, then

www.manaraa.com

 26

ISEMasq would also need to have code to handle address resolution protocol (ARP) in

order to fill in the Ethernet header. It is therefore preferable to use LIBNET_RAW_ADV

for sending IP packets, as it sends the data through the kernel, which uses the system’s

routing function to determine proper link-layer encapsulating headers.

4.1.3 Standard Template Library

The Standard Template Library (STL) is a software library that was designed and

published by SGI and is partially included in the C++ Standard Library. Both libraries

include some features not found in the other [13]. Though since ISEMasq uses ISO C++

as it base language, the following discussion will only be concerned with its

implementation of the STL, which is a subset of the original SGI STL.

The design of ISEMasq hinges on the ability to quickly and reliably store and

retrieve connection information. Now, while it would have been possible to write custom

data structures from scratch, they would have to be extensively tested to ensure

performance, reliability, and data consistency. The STL library not only satisfies these

concerns, but it is highly flexible due to its template-based design and its additional

library of STL algorithms.

Of the many available STL containers, ISEMasq relies extensively on the map

class, which can be conceptually thought of as an “associative array” in which key values

are associated with corresponding values. Maps are based on the red-black tree data

structure, and guarantee O(log n) insertion and lookup time [13]. Additional details on

the use of this and the other structures used can be found in the Chapter 5.

www.manaraa.com

 27

In addition to being designed with STL data structures, the back-end database is

encapsulated in a separate C++ class; see Appendix A for the class header file. This code

modularity will aid making further improvements to the back-end in two ways:

1) As is standard for object-oriented design, the implementation of the class can be

easily changed without affecting the interface and hence any of the Main code.

2) Since the implementation relies on the STL, changing the underlying data

structures would require very little code rewrite. Ideas for what to change are

discussed in more depth in Chapter 6.

4.1.4 Boost

Boost was started by members of the C++ Standards Committee Library Working

Group and has since expanded to include thousands of programmers from the C++

community at large with a license that encourages both commercial and non-commercial

use [14]. Adobe, Real Networks, and McAfee are a few of the big name organizations

that use the Boost libraries [15]. The Boost Group emphasizes libraries that work well

with the C++ Standard Library. In fact, ten of the Boost libraries are included in the C++

Standard Library’s Technical Report 1 (TR1), and so are slated for later full

standardization. TR1 is a draft document specifying additions to the C++ Standard

Library, and though it is not yet standardized, will likely, as it stands now, be part of the

next official standard due out by 2009. More Boost libraries are in the pipeline for TR2.

For these reasons, using Boost libraries can give ISEMasq a head start in adopting new

technologies.

www.manaraa.com

 28

While the Boost library offers dozens of various libraries, two in particular were

of use in ISEMasq: Boost program options and Boost threads. The Boost program options

library provides ISEMasq with an object oriented API for creating and parsing program

parameters from either the command line or a configuration file [16]. The Boost threads

on the other hand were used to provide the concurrent traffic processing needed for

ISEMasq to handle full duplex communications.

There are several advantages to using Boost libraries instead of existing C

variants, especially since C requires careful use in C++. For instance the Boost thread

interface was designed from the ground up and is not just a simple wrapper around any

specific C threading API. Many features of C++, such as the existence of

constructors/destructors, function objects, and templates, were fully utilized to make the

interface more flexible. The resulting implementation currently works for POSIX,

Win32, and Macintosh Carbon platforms [17]. In short, the use of Boost libraries adds

interface flexibility to ISEMasq where it otherwise wouldn’t exist and facilitates

developmental consistency by keeping as much of the project based in C++ as possible.

4.2 General Considerations

With the programming framework set up, it is necessary to turn the focus towards

other architectural considerations that were encountered during the development of

ISEMasq. These include what type of network device ISEMasq will mimic and the ability

of multiple threads to simultaneously access the same network traffic.

www.manaraa.com

 29

4.2.1 Network Device Type

There are two main types of network devices: active and passive. Most network

devices act as active nodes on a network, meaning that they often have their own IP

address and are visible to the other devices on the network. In this case a device’s NIC

(network interface card) operates normally by checking the destination MAC address of

the Ethernet frame against its own and if it matches, saves the frame for further

processing by the operating system, or else it discards the frame. Passive devices on the

other hand, such as switches and network taps, are transparent, meaning that they are

essentially invisible to the other devices on the network. The main purpose of a

transparent device is to monitor or control traffic without other devices needing to know

of its existence.

Since ISEMasq is only concerned with traffic that is sent specifically to its MAC

address, like most routers, it is better suited as an active device. However, even though

ISEMasq need not be aware of every packet that a passive device sees, it does need to use

the same mechanism for listening to the wire. The reason for this is that most active

devices use system calls based on sockets and get their access to the network through

various mechanisms in the kernel. These mechanisms allow the network application to

read and write traffic only to or from the IP address that the kernel has associated with

the network interface. Given that ISEMasq is required to handle all IP traffic regardless

of IP address, socket-based design just won’t work. A potential caveat to this are divert

sockets in the FreeBSD system which according to the man page may provide a socket-

based program the ability to deal with unassociated IP addresses [18]. Instead, ISEMasq

uses libpcap and libnet as previously mentioned to read and write packets to the network.

www.manaraa.com

 30

While ISEMasq uses the same libpcap listening mechanism that some passive

devices use, it does not do packet capturing in promiscuous mode. This has an added

benefit because there is no need for additional filtering code, thus overhead is reduced

and the rate of data that the box can handle is increased. Instead of having to keep track

of the packets that are written out in order to filter them from looping back in, all that is

needed is a simple Ethernet destination filter applied to libpcap. So, if the destination host

is equal to the ISEMasq interface that captured it then it is processed, otherwise the

packet is ignored, letting the kernel handle it if so desired.

4.2.2 Threads and Packet Capturing

From a data flow perspective, the gateway function of ISEMasq effectively

bridges two network interfaces together such that all traffic from one is forwarded to the

other. In the software world this bridging can be done using C libraries such as libpcap

and libnet. To speed up such an implementation, threads can be used. In Figure 4.1,

Thread 1 is constantly capturing (via libpcap) from the WAN interface (eth0) and writing

(via libnet) to the LAN interface (eth1), as Thread 2 simultaneously reads from eth1, and

writes to eth0.

www.manaraa.com

 31

Figure 4.1: Overall architecture and data flow of a typical software approach.

While this approach is effective, a problem arises when the design is expanded to

run multiple threads that need information from the same interface. Specifically, when

ISEMasq is run in Mode 3, both DNS and gateway need to listen for incoming traffic on

the WAN interface (i.e. eth0). In this scenario, the design needs to provide for a way to

allow two separate software components to simultaneously process data from the same

interface efficiently. It was decided to have each of the two components run a separate

libpcap capture on the WAN interface. The alternative would have required a manager

and worker thread design, which would have required more user-land processing as well

as additional shared data structures and corresponding mutexes. Instead, the simultaneous

capture approach allows for the main part of the program to simply spawn off a thread (or

set of threads) for each mode that’s activated. Not only does this simplify the code

www.manaraa.com

 32

organization, but it also speeds up packet processing as can be seen by looking at the

libpcap internals.

The libpcap packet capture library is optimized for use with the Berkeley Packet

Filter (BPF) on UNIX-based platforms. The BPF not only provides a very effective

mechanism for capturing traffic it also provides built-in filtering capabilities that happen

in kernel space. So, in addition to leveraging the BPF for performing the actual packet

capture, libnet provides a filter compiler for the BPF pseudo-machine code. On most

systems supporting it, a kernel-resident BPF implementation processes the filter code and

applies the resulting pattern matching instructions to received frames. Those frames

matching the patterns are received through the BPF machinery; those not matching the

pattern are otherwise unaffected [19].

When a packet filter instance of BPF is created, it is bound to an actual network

interface such as eth0 or eth1 and shows up as a special device such as bpf0, bpf1, etc.

On a FreeBSD system, a given interface can be shared by multiple BPF instances, and the

filter underlying each descriptor will see an identical packet stream [20]. Whenever a

packet is received by an interface, all BPF descriptors listening on that interface apply

their filter and each descriptor that accepts the packet receives its own copy. This allows

ISEMasq to simply create multiple BPF instances on the WAN interface, with each BPF

instance seeing and filtering the incoming data in the kernel before it is passed to the

respective thread within ISEMasq for further processing.

4.3 Alternate Approaches

During the design process, various alternative software approaches were

considered for the DNS and gateway components of ISEMasq. As the following

www.manaraa.com

 33

discussion shows, they are not as well suited for the design goals as the programming

architecture and framework included in ISEMasq and already discussed.

4.3.1 Gateway

The default firewall software that comes with FreeBSD is known as PF or

PacketFilter [21] and is similar to IPF/IPNAT, IPFW/NATd, and IPTables. In conducting

initial research during early development of ISEMasq, it was discovered that PF could

provide functionality very similar to that of the gateway portion of ISEMasq. All that is

needed is to enable PF and the gateway options in FreeBSD’s system configuration, then

add one or more rules in the PF configuration file [21]. A very simple example of such a

file would look like this:

rdr pass on eth0 proto tcp from any to any port 1234 -> $Dest_Server_IP

Considering that PF is designed and written to run in kernel-space, this seems like

a quick and effective solution, and maybe in some environments it would be fine, but in

the ISEAGE world this is far from sufficient. The most obvious drawbacks compared to

ISEMasq are that it does not have the DNS capabilities as well as it would be very

difficult to integrate with DeepFreeze since the DFD is designed to interact with user

executables. Therefore, in order to integrate a PF-type solution with ISEAGE, a custom

application or tool will still need to be written in order to allow the DeepFreeze console

to control and configure it. The tool would run on one of the nodes just like ISEMasq and

would have to integrate with the DFD so that it could then configure and restart PF based

on some configuration settings. Also as mentioned, since PF requires a separate rule to be

www.manaraa.com

 34

generated for each connection mapping desired, configuring it would be more involved

than the simple configuration file that ISEMasq is able to provide

Additional drawbacks of PF include fault tolerance, scalability, and

customization. Even though PF runs in kernel-space, if it crashes it could potentially

crash the system. Also, since its functionality is based on a firewall, it could interfere

with other applications, especially network-dependent ones such as the DFD. Regarding

scaling, a separate rule would need to be added for each destination port to be handled,

where as ISEMasq was designed to use a single set of logic to map ports regardless of the

number of different mappings.

Finally, even though PF is capable of performing many types of packet filtering

and redirecting, what is required for this task is but a small and uncommon use of it.

ISEMasq, on the other hand, has been designed specifically for its task, enabling it to

provide additional features that PF cannot (see Chapter 5). Because of this specialization,

initial testing using the worst case of an nmap scan showed that ISEMasq is able to

perform as well as PF, even though much of it runs in user-space.

4.3.2 DNS

Developed by the Internet Systems Consortium (ISC), BIND (Berkeley Internet

Name Domain) is used on the majority of name serving machines on the Internet [22].

Attempting to provide the DNS functionality of ISEMasq with software such as BIND

presents significant hurdles. First, one would need to make sure that all the DNS traffic

makes it to the BIND service regardless of the actual destination IP address. This could

be accomplished by either aliasing all possible IP address on the interface or by using PF

to redirect all incoming traffic to a specific location such as the localhost. Neither of these

www.manaraa.com

 35

is very feasible for two reasons: 1) it is impossible to alias all IPs, and 2) any PF solution

would be very difficult to integrate into ISEAGE as discussed previously in Section 4.3.1.

Now, even if the hurdles of using BIND can be overcome to this point, there is

still the issue of providing responses to the lookups. Since BIND would be running

without the DNS infrastructure at large to facilitate name resolutions, an all-inclusive

lookup cache would have to be created. Such a cache would be incredibly large and

nearly impossible to manage properly.

By developing a custom solution such as ISEMasq, all the issues mentioned

above are avoided. First of all, ISEMasq uses low-level network APIs such as libpcap to

make sure that it has access to all the traffic coming into the interface allowing it to make

the decision if the traffic is relevant. Second, the DNS records are not predefined, but

rather created on the fly and then simply timed out if not re-queried after some time. To

ensure that the records that have been requested are not held on to past this timeout, the

TTL option in the DNS message packets is set to a value that is less then the timeout. If a

specific record is re-queried before the timeout has expired, then the timeout value is

simply updated and counting starts again.

www.manaraa.com

 36

5 Implementation

Based on all the design goals and architecture decisions described previously, the

final implementation form of ISEMasq consists of a main program, a DNS endpoint

thread, two virtual endpoint gateway threads, and a back-end database class. These

components interact as seen in Figure 5.1.

Figure 5.1: Implementation Overview

The main modestly parses the user-input configuration options, both from the

command line and configuration file (see Appendix B), then initializes the custom data

class, initializes libnet and libpcap on the appropriate interfaces to include necessary

traffic filters, and spawns the corresponding threads to handle the packet flow. The

libpcap filter setup and thread spawning is dictated by which run mode is selected by the

user and is very important here as it determines what traffic the gateway the DNS

components see and process. The implementation of each major component of ISEMasq

is examined in more detail in the following sections.

www.manaraa.com

 37

5.1 Virtual Endpoint Gateway

The virtual endpoint gateway component consists of two threads and three back-

end data structures. Looking at the data structures first, they consist of two STL maps and

one STL queue. The maps have the following < key , value > pairs:

Internal Destination < port number, IP address >

Current Connections < IP-tuple, custom struct >

And the queue has a single < value > layout:

Stale Connections < STL iterator >

The value of the key in the Current Connections data structure is the connection

ID and is derived from the source IP, source port, and destination port, also known in

networking as the IP-tuple, resulting in a 64-bit value that is unique to the connection.

While the elements of the map are stored based on this key value, the queue elements are

stored in order of the creation time of the corresponding map elements that they point.

Instead of having a single monolithic data structure for tracking connections, it

was decided to use two smaller dynamic data structures that can be rapidly changed: one

for the data entries and one for timestamps to identify stale entries that need deletion.

Having two separate data structures for connection tracking effectively separates the

database insertion operation from the purge operation. This in turn provides better

performance as each structure can be chosen to optimize for its specific data access

needs. The map provides O(log n) insertions based on the connection ID while the queue

provides O(1) additions and deletions based on the connection timestamp.

The two threads comprising the virtual endpoint gateway are responsible for

processing traffic from the WAN interface to the LAN interface (inbound traffic), and

www.manaraa.com

 38

from the LAN to the WAN (outbound traffic) as can be seen in Figure 5.2. It is important

to note that the inbound thread is the only one modifying or writing to the data structures,

as the outbound thread merely reads data. Carefully controlling access to the database as

such helps reduce complexity and possible data corruption, resulting in better

performance and reliability.

Figure 5.2: Gateway Flow

With this flow in mind, it is worthwhile to examine the endpoint masquerading

process in a little more detail by taking a look at the processing of each thread

individually starting with the incoming traffic. Once traffic has been captured and filtered

on the WAN interface it is processed as follows:

• Get the current time

• Generate the connection ID

• Attempt to add the ID to the database

• If the Add succeeded, add a corresponding entry to the purge queue

• Else if the Add failed, update the time stamp of the existing connection

www.manaraa.com

 39

• Use the destination port to lookup the new destination IP

• Modify the packets destination IP and TTL, then fix checksums

• Check next queue entry for expiration

• If stale, then remove

• Else add to back of queue

• Write packet out to LAN interface

Since much of the work needed for the masquerading process is handled by the

inbound thread, completing the process on the return or outbound traffic as it is captured

and filtered on the LAN interface is simply as follows:

• Generate the connection ID

• Use ID to lookup the original destination IP

• Restore the packets original addresses

• Write packet out to WAN interface

With the packet processing of the gateway component clearly outlined, it’s time

to move on to the DNS component, which ensures that Internet applications are able to

look up ways to get to the gateway.

5.2 Virtual DNS Endpoint

The virtual DNS endpoint serves the purpose of providing a more realistic

gateway in ISEMasq by allowing the use of URLs instead of IP addresses. This

component also has three back-end data structures and is very similar in data and network

flow to the virtual gateway endpoint component except that it only consists of a single

www.manaraa.com

 40

thread. Again considering the data structures first, the two STL maps used have the

following < key , value > pairs:

Standard Lookups < URL, IP Address >

Reverse Lookups < IP Address, STL iterator >

And the queue has this < value > layout:

Stale Records < STL iterator >

All three structures will always be the same in size, since the reverse lookup map

and stale record queue are cross-linked against the standard lookup map via STL

iterators. This linking, combined with the custom structure that contains data, such as the

timestamps, makes up the standard lookup map the main data structure for this

component, much like the current connections map in the gateway component. With

these structures in place, it is time to discuss the process of handling incoming DNS

requests. While the code needed to actually parse and construct DNS message packets is

a little tricky, the general process overview of this component can be seen here in Figure

5.3.

Figure 5.3: DNS Flow

www.manaraa.com

 41

With this flow in mind, it is worthwhile to examine the DNS masquerading

process in a little more detail by taking a look at the processing of individual DNS

requests. Once traffic has been captured and filtered on the WAN interface, the thread

checks the type of DNS message. If the message is a query, it attempts to look up the

appropriate reply based on the type of query and then builds and transmits a response

message. If the lookup is successful then the timestamp for the corresponding entry is

updated. In the case that the lookup does not find an existing entry, then one is

dynamically generated and added to the standard lookup map. Following this, a

corresponding entry is also added to the back of the stale entry queue. These on-demand

record generations can have various constraints; the most common being the allowed

range of values from which an IP address can be picked, as will be discussed in the

following section. Though this description of the DNS component does not discuss the

many nuances of the DNS message format and its parameter specifics, the overall

concept is fairly straightforward and effective.

5.3 Additional Features

There are several additional features built into ISEMasq that perform functions

ranging from providing feedback to controlling program flow. At present there is an

additional thread that runs every few seconds for the sole purpose of displaying

connection and database statistics. In the future this should be integrated with the

proposed GTK+ front end as discussed in more detail in Chapter 6. Also, ISEMasq has

the ability to control which subnet(s) the DNS endpoint is allowed to host lookups for.

The range can be all routable IP’s or a specific class A, B, or C subnets, depending on the

constraints of the simulation.

www.manaraa.com

 42

Another feature in ISEMasq is the destination flow control, which consists of two

parts. First is the default destination option, which if set sends all traffic from ports that

aren’t specifically mapped to the default server, much like a DMZ NAT mapping. If left

unset, the software will randomly cycle through the existing destination mappings each

time an unknown destination port is detected.

The second part of the destination flow control allows for multiple destinations

(servers) to operate on the same port, i.e. provide the same service. In this case it would,

for example, be possible to have multiple web servers behind the gateway. If enabled, the

software then spawns off a thread that will periodically (e.g. every minute or so) change

the mapping for that service, in this case port 80. In addition to load balancing, this also

allows for session-level content to vary dynamically over time.

Finally, though not designed with this in mind, ISEMasq can be hooked up in

reverse to allow for some interesting traffic control and honey potting. If ISEMasq were

to be hooked up to a wireless access point (AP) as its default route, then it is possible to

control the actual destinations of all traffic from anyone connected to the AP. In this case,

ISEMasq would be used to condense specific traffic to either a pool of custom servers or

to specific servers elsewhere on the network or even Internet.

www.manaraa.com

 43

6 Future Work

While ISEMasq has reached a solid milestone in its development with the major

functionality and design goals having been met, there is always room for improvement.

Future scalability with any large network application is always a concern, especially

considering that ISEAGE will inevitably continue to grow. For this reason the following

changes and add-ons to the ISEMasq design are suggested so that performance and ease

of use keep pace with the further development of ISEAGE. First it may be beneficial to

try using an unsorted-map data structures instead of the current STL map structure,

especially for the larger internal databases. Slated for release as part of TR2, the unsorted

map will finally provide the C++ STL with a hash table based structure, thus allowing for

constant time lookups and insertions.

Next, in order to integrate with DeepFreeze, two tasks need to be done. First, a

GTK+ front-end needs to be designed and written to work with the DeepFreeze console.

GTK+ is a developer toolkit for creating graphical user interfaces [23]. This task will

require creating a single GTK+ window that implements the function stubs defined by the

DeepFreeze API, and provides full configuration control for the ISEMasq tool. The

traditional way of creating this interface would be to code it entirely in C/C++. However,

the latest version of Glade (Glade-3) [24], the most used User Interface Designer for

GTK+, has deprecated the generation of C code in the interface creation process in favor

of the libglade approach [25]. This new approach only requires the base framework to be

written in C/C++ while the actual interface is done in XML and loaded dynamically at

run-time, thus and increases flexibility and reusability while greatly reducing

development time. The resulting interface then needs to be compiled as a loadable

module that the DeepFreeze Console will read in and add as a tab to the main control

www.manaraa.com

 44

interface. Additionally, the DeepFreeze Console configuration file will need to be

appended with the specific ISEAGE nodes that the new tool is to run on.

Finally, in order for the loadable console to control the remote tool once

DeepFreeze has launched it, the command line version of ISEMasq (as it exists now),

needs to be modified to read and write data over the DeepFreeze communication channel.

DeepFreeze conveniently sets these channels up to simply be stdin and stdout, though the

programmer of the tool needs to come up with his/her own payload format for the data.

To this end, the configuration of the tool will no longer be done from the command line

of each ISEAGE node running the tool, but rather pushed down from the front-end

control console. Once completed the ISEMasq Console plug-in for DeepFreeze will be

able to control all instances of ISEMasq from the loaded interface module.

www.manaraa.com

 45

7 Conclusion

While there is some additional work that can be done to further improve

ISEMasq, it is mostly cosmetic, such as the DeepFreeze interface or common code

polishing to eliminate any minor bugs. As it stands, the command line version of

ISEMasq has quite successfully met the current design goals. To compliment this, the up-

and-coming upgrade to ISEAGE, a.k.a. ISEAGE 2.0, will provide new hardware,

including multi-core processors on each of the ISEAGE nodes. Not only will this upgrade

benefit all the ISEAGE tools in general, it will specifically benefit ISEMasq due to its

multithreaded design, which can take full advantage of the multi-core processors.

With the goals met and the desired functionality of ISEMasq and its components

firmly in place, the core framework for the ISEAGE testbed is finally near completion.

This framework, i.e. Layers 1 and 2, complimented by Layer 0, should contribute

significantly to the further completion of ISEAGE and will hopefully lead to a bright

future of further development and testing of security products and concepts.

www.manaraa.com

 46

Appendix A: Data Class Header File

#ifndef ISEMasq_DS_H
#define ISEMasq_DS_H

#include <arpa/inet.h>
#include <stdint.h>
#include <ctime>
#include <cstdlib> //rand()
#include <iostream> //cout & such
#include <string>
#include <deque> //double ended que from STL
#include <map> //one-to-one mapping from STL

struct Node {
 uint32_t ip_addr;
 time_t time_stamp;
};

class masq_ds
{
 public:
 //Constructor and Destructor, wii...=)
 masq_ds();
 ~masq_ds();

 //Member Functions for DNS mode
 uint32_t Lookup_IP(std::string url); //dns_thread
 std::string Lookup_URL(uint32_t ip); //dns_thread

 //Member Functions for Gtw mode
 void Set_Default_Dst(uint32_t dst_ip); //main()
 void Add_Dest(uint16_t port, uint32_t dst_ip); //main()

 void Update_DS(uint64_t key, uint32_t dst_ip); //In_thread
 uint32_t Lookup_Dst(uint16_t dst_prt); //In_thread
 void Process_Que(); //In_thread
 uint32_t Lookup_Src(uint64_t key); //Out_thread

 //Stat Functions
 int get_map_size() { return main_map.size(); } //Stat_thread
 int get_que_size() { return purge_que.size(); } //Stat_thread
 int get_dns_size() { return dns_map.size(); } //Stat_thread

 private:
 //member vars and data structures for DNS functionality
 uint32_t max_dns_size;
 std::map<std::string, Node> dns_map;
 std::map<uint32_t, std::map<std::string, Node>::iterator > dns_rev_map;
 std::deque< std::map<std::string, Node>::iterator > dns_que;

 // member vars and data stuctures for Gtw funcionality
 uint32_t default_dst, max_que_size;
 std::map<uint16_t, uint32_t>::iterator dst_it;
 std::map<uint64_t, Node> main_map;
 std::map<uint16_t, uint32_t> dst_map;
 std::deque< std::map<uint64_t, Node>::iterator > purge_que;
};

www.manaraa.com

 47

Appendix B: ISEMasq Example Config File

#################################
ISEMasq example config file ##
#################################

Wan_if = rl0
Lan_if = ed0

1 is DNS only, 2 is GTW only, and 3 is Both
Run_mode = 3

If the run mode is DNS(1) or Full(3),
then any port 53 Dst_Server entries will be ignored

All desired mappings in form IP_addr:Port
Dst_Serv = 128.32.8.1:53
Dst_Serv = 64.32.16.8:80
Dst_Serv = 1.2.3.4:80
Dst_Serv = 5.6.7.8:22

Any ports that are specifically mapped above are randomly sent
to one of the Dst_Serv enties unless this is set.
Default_Serv = 1.2.3.4

Setting this will enable service rotation for any Dst_Serv
entries that use the same port, such as port 80 above;
otherwise only the first entry of port 80 is used.
Serv_Rotation = 1

www.manaraa.com

 48

References
[1] President’s Information Technology Advisory Committee (PITAC). (2005, February).

Cyber Security: A Crisis of Prioritization. PITAC Reports to the President. [Online]
Available: http://www.nitrd.gov/pitac/reports/20050301_cybersecurity/cybersecurity.pdf.
Retrieved: 31 Oct 2007.

[2] A. Hoenecke, T. Gillispie, B. Anderson, and T. Daniels. The role of information warfare in
information assurance education: a legal and ethical perspective. presented at 2007 ASEE
Annual Conference & Exposition. [Online]. Available:
http://www.asee.org/acPapers/AC%202007Full2158.pdf

[3] D. Jacobson. (2003). ISEAGE Overview. Iowa State University Information Assurance
Center. [Online]. Available: http://www.iac.iastate.edu/iseage/iseage_overview.pdf.
Retrieved: 31 Oct 2007.

[4] N. L. Karstens, “DeepFreeze: a management interface for ISEAGE,” M.S. Thesis, Info.
Assurance and Comp. Engr., Iowa St. Univ., Ames, 2007.

[5] A. L. Hahn, “Advanced packet obfuscation and control program (APOC),” M.S. Thesis,
Comp. Engr. and Info. Assurance, Iowa St. Univ., Ames, 2006.

[6] H. J. Qureshi, “Generating background network traffic for network security testbeds,” M.S.
Thesis, Comp. Engr. and Info. Assurance, Iowa St. Univ., Ames, 2006.

[7] B. A. Forouzan, “Delivery and Routing of IP Packets,” in TCP/IP Protocol Suite, 2nd ed.
Boston, MA: McGraw-Hill, 2003 ch. 6, pp. 147-168.

[8] Traditional IP Network Address Translator (Traditional NAT), RFC 3022, 2001.

[9] B. A. Forouzan, “Network Address Translation (NAT),” in TCP/IP Protocol Suite, 2nd ed.
Boston, MA: McGraw-Hill, 2003, ch. 30, sect. 3, pp. 780-783.

[10] B. A. Forouzan, “Domain Name System (DNS),” in TCP/IP Protocol Suite, 2nd ed.
Boston, MA: McGraw-Hill, 2003, ch. 18, pp. 497-526.

[11] SourceForge, Inc. (2007). SourceForge.net: The libpcap project. [Online]. Available:
http://sourceforge.net/projects/libpcap/. Retrieved 31 Oct, 2007.

[12] The Packetfactory. (2007). The Million Packet March. [Online]. Available:
http://www.packetfactory.net/libnet/. Retrieved: 31 Oct 2007.

[13] The C++ Resources Network. (2007). STL Containers – C++ Reference. [Online].
Available: http://www.cplusplus.com/reference/stl/. Retrieved: 31 Oct 2007.

[14] B. Dawes, D. Abrahams, and R. Rivera. (2007). Boost C++ Libraries. [Online]. Available:
http://www.boost.org/. Retrieved: 31 Oct 2007.

[15] Various Authors. (2005). Shrink Wrapped Boost. [Online]. Available:
http://www.boost.org/doc/html/who_s_using_boost_/shrink.html. Retrieved: 31 Oct 2007.

[16] V. Prus. (2004). Chapter 10. Boost.Program_options. Boost C++ Libraries. [Online].
Available: http://www.boost.org/doc/html/program_options.html. Retrieved: 31 Oct 2007.

[17] W. E. Kempf. (2006). Chapter 15. Boost.Thread. Boost C++ Libraries. [Online]. Available:
http://www.boost.org/doc/html/thread.html. Retrieved: 31 Oct 2007.

www.manaraa.com

 49

[18] The FreeBSD Project. (2007). divert. FreeBSD Hypertext Man Pages. [Online]. Available:
http://www.freebsd.org/cgi/man.cgi?query=divert&sektion=0&apropos=0&manpath=Free
BSD+6.2-RELEASE. Retrieved: 31 Oct 2007.

[19] S. McCanne and V. Jacobson, “The BSD packet filter: A new architecture for user-level
packet capture,” in Proceedings of the Winter 1993 USENIX Conference, San Diego, CA,
pp. 259--269.

[20] The FreeBSD Project. (2007). bpf(4). FreeBSD Hypertext Man Pages. [Online]. Available:
http://www.freebsd.org/cgi/man.cgi?query=bpf&sektion=4&apropos=0&manpath=FreeBS
D+6.2-RELEASE. Retrieved: 31 Oct 2007.

[21] The FreeBSD Project. (2007). pfctl(8). FreeBSD Hypertext Man Pages. [Online].
Available:
http://www.freebsd.org/cgi/man.cgi?query=pfctl&sektion=8&apropos=0&manpath=FreeB
SD+6.2-RELEASE. Retrieved: 31 Oct 2007.

[22] Internet Systems Consortium, Inc. (2004). ISC BIND. [Online]. Available:
http://www.isc.org/products/BIND. Retrieved: 31 Oct 2007.

[23] The GTK+ Team. (2007). GTK+ - The GIMP Toolkit. [Online]. Available:
http://www.gtk.org/. Retrieved: 31 Oct 2007.

[24] V. Geddes, Sun GNOME Documentation Team, and M. Vance. (2006). Glade Interface
Designer Manual. [Online]. Available: http://glade.gnome.org/manual/index-info.html.
Retrieved: 31 Oct 2007.

[25] J. Henstridge. (2005). Libglade. [Online]. Available:
http://www.jamesh.id.au/software/libglade/. Retrieved: 31 Oct 2007.

www.manaraa.com

 50

Acknowledgements

As I turn the page on this chapter of my life, I would like to pause for a moment

to express my deepest gratitude to all those who made the successful completion of this

journey possible. First off, to my major professor Dr. Jacobson for his patience, funding,

and the opportunity to work with the ISEAGE project. To both Dr. Daniels and Dr.

Bergman for their feedback and participation on my thesis committee. Many thanks to

my graduate student colleges, who listened and put up with me, and who provided valued

technical input when needed. Also, I would like to extend a special thank you to my

family for their unwavering support and words of encouragement over the last couple of

years.

Lastly, and most of all, I would like to thank my wife, Dr. Meagen Gillispie, for

her unwavering kindness and support these past couple years. Not only did she stay

engaged to me until I returned from deployment in 2004, she has embraced the changes it

had on me, both good and bad. She has stood by me in all my endeavors and has provided

me with a solid foundation that I have come to depend on. Without her love and

encouragement I would not be were I am today. Meagen, I love you so much; thank you

from the bottom of my heart.

	2007
	Internet scale endpoint masquerading
	Thad Michael Gillispie
	Recommended Citation

	Microsoft Word - Thesis_Final_TMG.doc

